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We investigate the simple connectivity of l~subgroup complexes of finite 
groups. 

Let G be a finite group and p a prime. The commuting graph Ap(G) for G 

at p is the graph on the set of subgroups of G of order p whose edges are the 

pairs of commuting subgroups, and the commuting complex for G at p is the 

clique complex K p ( G )  = K(Ap(G)) of the commuting graph; that is the simplicial 

complex whose simplices are the cliques of Av(G ). The commuting complex has 

the same homotopy type as the Brown complex and the Quillen complex for G at 

p. The latter complexes have received a fair amount of attention; see for example 

[14], [18], and [101. 

In this paper we begin a systematic study of the question: For which finite 

groups G and prime divisors p of the order of G is the commuting complex Kp(G)  

simply connected? Modulo a conjecture on the simple connectivity of certain 

minimal complexes, we reduce the problem of deciding simple connectivity to the 

corresponding problem for simple groups. This latter problem can presumably 

be solved. Moreover we establish our Conjecture in almost all cases. 

* This work was partially supported by NSF DMS-8721480 and NSA MDA90-88-H- 
2032. 
Received June 22, 1992 and in revised form September 7, 1992 



2 M. ASCHBACHER Isr. J. Math. 

CONJECTURE: Let G be a finite group such that G = AF*(G), where A is an 

elementary abellan p-subgroup of rank at least 3 and F*( G) is the direct product 

of the A-conjugates of a simple component L of G of order prime to p. Then 

Kp( G) is simply connected. 

Given a graph A and a vertex x of A, write A(x) for the set of vertices distinct 

from x and adjacent to x in A. 

THEOREM 1: Assume the Conjecture and let G be a finite group, p a prime 

divisor of the order of G, and A = Ap(G). Assume A(x) is connected for aJ1 

x E A and let G = G/Op,(G). Then exactly one of the following holds: 

(1) Kp(G) is simply connected. 

(2) G = G1 x G2 and Gi has a strongly p-embedded subgroup for i = 1 and 2. 

(3) 0 = X(Cl  x G2), for some X E A, p -= 3,5, {~1 ~'~ L2(8), Sz(32), re- 

spectively, G2 is a nonabelian simple group with a strongly p-embedded 

subgroup, and X induces outer automorphisms on Gi for i = 1 and 2. 

(4) 0 is almost simple and Kp(G) and Kp(F*(G)) are not simply connected. 

THEOREM 2: Let G be a finite group, p a prime divisor of the order of G, 

and assume Op(O) = 1, a = ap(G) is connected, and H,(K~(C)) = 0. Then 

m,(G) > 2 and A(x) is connected for each x e hp(G). 

THEOREM 3: Assume G and L satisfy the hypotheses of the Conjecture and that 

the Conjecture holds in proper sections of G. Then 

(1) I lL  is of Lie type and Lie rank at least 2 then Kp( G) is simply connected. 

(2)" I lL  ~- L2(q) with q even then K,(G) is simply connected. 

(3) I lL  is an alternating group then Kp(G) is simply connected. 

(4) I lL  is a Mathieu group then Kp(G) is simply connected. 

Theorems 1 and 2 say that,  modulo the Conjecture and a short list of excep- 

tions, Kp(G) is simply connected if and only if mp(G) > 2 and h(x)  is connected 

for each x ~ i p ( a ) .  Moreover if m A a )  > 2 then A(x) is connected for all 

x E Ap(G) unless G,p is one of the exceptions listed in sections 7 and 8. 

The following observations expand upon these points: 

Remarks: 

(1) If Op(G) ¢ 1 then G is contractible and hence simply connected (cf. Lemma 

2.2 in [14]). Thus the restriction that Op(G) = 1 in Theorem 2 causes no 

loss of generality. 
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(2) It is well known that Ap(G) is disconnected if and only if G has a strongly 

p-embedded subgroup (cf. 44.6 in [1]). Moreover we know all groups with 

strongly p-embedded subgroups (cf. 6.2). Thus the restriction in Theorem 

2 that A be connected results in no loss of generality, and the groups in 

Cases (2) and (3) of Theorem 1 are completely described. 

(3) Recall a simplicial complex is simply connected if and only if its fundamen- 

tal group is trivial, while the first homology group of the complex is the 

abelianization of its fundamental group. Thus the hypothesis in Theorem 2 

that H~(Kp(G)) = 0 is weaker than simple connectivity. So Theorem 2 says 

that the hypothesis in Theorem 1 that A(x) be connected for each x E A 

is necessary for simple connectivity, and that if Op(G) = 1 and Kp(G) is 

simply connected then mp( G) > 2. 

(4) The condition A(x) connected has various equivalent formulations; see for 

example 6.3. Further sections 7 and 8 describe all finite groups G with 

rap(G) > 3 such that h(x)  is disconnected for some x E h. Thus Theorems 

1 and 2 do indeed constitute a fairly complete reduction to the simple case, 

modulo the Conjecture. 

(5) Recall that from the Classification of the finite simple groups, each non- 

abelian simple group L is an alternating group, a group of Lie type, or one 

of the 26 sporadic groups. Thus  Theorem 3 reduces a verification of the 

Conjecture to the case where L is of Lie type and Lie rank 1 (i.e. L ~- L~(q), 
U3(q), Sz(q), or 2G2(q)) or L is one of the 21 sporadic groups which are not 

Mathieu groups. Further to handle one of the remaining sporadic groups 

L using 11.5, it suffices to exhibit a family ~" of subgroups such that the 

geometric complex C(G, .~') defined by 9 v is a simply connected, residually 

connected flag complex. For example this is done for the Lyons group in 

[7]. 

(6) For some simple groups G and primes p we determine when Kp(G) is simply 

connected. For example 7.3, 7.6, 7.7, 8.5, and 8.6 describe those simple 

groups and primes for which Kp(G) is not simply connected because h(x)  

is disconnected for some vertex x. On the otherhand if G is of Lie type in 

characteristic p then by 5.5, Kp(G) is simply connected if and only if G is 

of Lie rank at least 3. 

(7) If G is sporadic then for most primes p, rap(G) _< 2, so Kp(G) is not simply 

connected. In the remaining cases it is likely that usually Kp(G) has the 
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same homotopy type as the flag complex of the p-local geometry of G (cf. 

[4]) and that the p-local geometry is Cohen-Macaulay in the sense of [14]. 

For example this is proved in [7] for the Lyons group when p = 3. 

The proof of our Theorems depends upon the theory developed in [6] and [8] 

for studying the simple connectivity of simplicial complexes. In particular the 

reader is referred to these references for notation and terminology. The proof 

of Theorem 2 uses results in [19] and was suggested by Yoav Segev; it is an 

improvement on my original proof. 

1. Prel iminary Lemmas  

(1.1): Let p be a prime, G an almost simple finite group, F*(G) = L, and 

[G : L[ = p. Then one of the following holds: 

(1) L = X(q  p) is of  Lie type and G = L X  where X ~ Zp induces field auto- 

morphisms on L. 

(2) L = L',(q) with q - e =- n - 0 mod p and G induces inner-diagonal-field 

automorphisms on L. In particular rap(L) >_ min{2, n - 2}. 

(3) p = 3, L ~- E~(q), q -- e mod 3, and G induces inner-diagonal-field auto- 

morphisms on L. In particular raa( L ) >_ 5. 

(4) p = 3, L ~- Da(q) or 3Da(q) and ma(G) _> 2. 

(5) p = 2 and ra2(G) ___ 2. 

Proof." These are well known facts about the automorphism groups of the simple 

groups. See for example 7.4 in [12]. | 

(1.2): Let G be a finite group, L <_ G with [G : L] <_ 2, L quasisimple with 

Z(L)  ~ 1 = O(G), P E Syl2(G), and SCNa(P)  = 0.  Then 

(1) L ~- SL2(q)  or Spa(q), q odd, SL~4(q), q - - e  m o d  4, o r  A . / Z 2 ,  7 <_ n < 

11. 

(2) I f  ra2(Cp(t)) <_ 2 for some involution t E P N L then L ~- AT/Z2, SL2(q), 

or Spa(q). 

Proof." As SCNa(P)  = 0 ,  P has sectional 2-rank at most 4 (cf. [11]). Then 

as 02(L)  # 1, the discussion in Section 2 of Part III of [11] shows L ~ SL2(q) 

or Spa(q), q odd, SLy(q), q - - e  mod 4, or A , / Z 2 ,  7 < n < 11. Extensions of 

Sz(8) and MI~ axe eliminated as SCNa(P)  = ~; cf. Lemma 5.1 on page 148 of 

[11] for M12. 
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So (1) is established. To prove (2) we may take G -- L and t E P an involution 

with m2(Cp(t)) <_ 2. 

Suppose L ~- An/Z2, for 8 < n < 11. As G = L and SCN3(P) -- O, n ~ 8 or 

9; eg. otherwise L has a subgroup La(2)/E16 containing P.  Similarly if n = 10 

or 11 L has a subgroup H with P _< H and ]H : K[ = 2 with K ~- As /Z: ,  so 

t E H - K and we check that  for each such involution, m2(Cp(t)) > 2. 

Finally let L ~- SLy(q). Then P = E(P~ x P~) with Pi quaternion and E = 

(a, b) ~ E4, with (a)Pi semidihedral and P1 b = P~. Hence each involution t E P 

is P-conjugate to an element of P1P2 or E and thus m~(Cp(t)) > 2. 

Recall the o r d e r  c o m p l e x  of a poset X is the simplicial complex with vertex 

set X and simplices the finite chains in X. We write O(X)  for the order complex 

of X,  although often we abuse notation and simply write X for this complex. 

(1.3): (Bouc) Let X be a ~nite poset, and for B C X and x E X ,  let B(>_ x) = 

{b E B :  b > x}, B ( >  x) = {b E B :  b > x}, O(X)  the order complex of X,  and 

f x ( B )  the set of all x e X such that O(B(>_ x)) is contractible. Then 

(1) B C_ f x ( B )  and if f x ( B )  = X and B C_ Y C_ X then O(B), O(Y),  and 

O(X)  have the same homotopy type. 

(2) Let X* consist of those x E X such that O ( X ( >  x)) is not contractible. 

Then X = f x (X*) ,  so O(X)  and O(Y)  have the same homotopy type for 

each subset Y o/ 'X  containing X*. 

Proof: This is Proposition 2 and 4 in Bouc, [10]; as the proof is omit ted in [10], 

we give one here. 

First for b E B, b is the least element of B(:> b), so b E f x ( B ) .  Also if 

B C Y C X and X = f x ( B ) ,  then Y = f y (B) ,  so to prove (1), by transit ivity 

of homotopy equivalence it suffices to prove B and X have the same homotopy 

type. But if t : B --~ X is the inclusion map then t-l(X(>_ x)) = B(> x), so 

Proposition 1.6 in [14] completes the proof. See also 4.3 in [8] for a proof of 

Proposition 1.6. 

Thus (1) is established and it remains to prove (2). We induct on the order of 

X.  If X has order 1 then X* = X,  so as X* C_ f x (X*) ,  the lemma holds in this 

c a s e .  

Let x E X and Z = X(_> x). Then Z(>_ z) = X(>_ z) for each z E Z. But if 

Z ~ X then by induction Z and Z* = X*(_> x) have the same homotopy type. 

Thus as Z is contractible, so is X*(>_ x), so x E f x (X*) .  
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Hence we may assume X has a least element x0 and it remains to show x0 E 

f x ( X * ) ;  that  is we must show X* is contractible. Now if x0 E X* then X* has 

a least element and hence is contractible. On the otherhand if z0 ~ X* then 

Y = X - {x0} = X ( >  x0) is contractible and X* = Y*, so by induction, X* has 

the same homotopy type as Y, and hence is contractible. 

The he igh t  of an element x in a finite poser P is h(x) = d im(P (<  x)). 

(1.4): Let f : P ~ Q be a map of posers such that 

(1) f - l ( Q ( <  a)) is min{1,  h(a) - 1}-connected for each a E Q. 

(2) For a E Q, Q(> a) is connected if  h(a) = 0 while i f  h(a) = 1 then either 

Q(> a) ~ 0 or f - 1  (Q(< a)) is simply connected. 

Assume Q is simply connected. Then P is simply connected. 

Proof." It  is an easy exercise to show P is connected. To show P is simply 

connected we use an argument of Quillen in Theorem 9.1 of [14]. Recall the 

notion of a loca l  s y s t e m  on a simplicial complex or poset in section 2 of [8] and 

[14]. 

For a E Q let 0(a) = f - l ( Q ( <  a)). Let F be a local system on P and for a E Q 

define E(a) = l i m z ¢ 0 ( ° ) F ( x )  if h(a) ~ O, while  if h(a) = 0 set E(a) = F(z , )  for 

some choice of x ,  E 0(a). For x E 6(a) let Ez,a : F(x)  ~ E(a) be the natural  

map  u ~ fi (el. 1.8 in [8]) if h(a) # O. On the otherhand if h(a) = 0 let E~,, = Fp 

for some pa th  p from x to x ,  in O(b) and some b > a. Such paths exist as O(b) is 

connected by (1). Further if b < b ~ and p~ is a path  for b' then F v = Fp, by 1.11 

in [8] as O(b t) is simply connected by (1). Thus as Q(> a) is connected by (2), 

Ez, ,  is independent of the choice of p and b. 

Next if a < b define Ea,b : E(a) ---* E(b) to be the natural  map  on limits when 

h(a) ¢ O, while if h(a) = 0 let Ea,b = E~,,b. Observe 

(3) If a < b and x E/~(a) then E~,b = Ea,b o E~,,. 

(4) If x < y • 8(a) then Ez, ,  = By,, o F~,y. 

Now Fp is an isomorphism by 1.4 [8], so if h(a) = 0 then Ez,a is an isomorphism. 

If  h(a) _> 2 or h(a) = 1 and Q(> a) = 0 ,  then by (1) and (2), 6(a) is simply 

connected, so E~,~ is an isomorphism by 1.8.2 in [8]. Finally if h(a) = 1 and 

Q(> a) ~ O there is b > a. Notice E~,~ is a surjection as/9(a) is connected. So 

as Ez,b is a bijection, (3) says Ez, ,  is a bijection. 

So in any case Ez,a is a bijection. Then if a < b, Ea,b = E z , b o E ~  is a bijection 

-1 (Ez,b o E~,,la) by (3). Further if a < b < c then Eb,c o E~,b = (Ez,c o Ez,b) o = 
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E=,c o E=,~ = E=,c for x E O(a). So E is a local system on Q. 

Finally we claim that  if p = x0 . . .  xr is a path  in P then Exr,S(~) o Fp = 

El(p) o Exo,l(~o). For r = 0 this is trivial and for r = 1 it follows from (3) and 

(4). Finally for r >_ 1 it follows from the case r = 1 by an easy induction on r. 

In particular if P is not simply connected then by 1.9 in [8] there is a local 

system F for P and a cycle p in P with Fp # id. But then ES(p) = F Ez°'s(.°) # id, 

so Q is not simply connected by 1.11 in [8], a contradiction. 

2. The join of complexes 

Let D and L be simplicial complexes. Recall the j o in  of D and L is the simplicial 

complex D V L whose vertex set is the disjoint union of the vertex sets of D and 

L and whose k-simplices are the disjoint union s V t of an/ -s implex  s of D and a 

j-simplex t of L with - 1  < i , j  and k = i + j  + 1, subject to the convention that  

is the unique (-1)-dimensional  simplex of D and L. 

(2.1): 
(1) D V L is connected i f  and only if  D and L are nonempty or D is connected 

or L is connected. 

(2) If  D and L are nonempty then D V L is simply connected i f  and only i f  D 

or L is connected. 

Proof." Let K = D V L and regard D and L as subcomplexes of K.  Observe each 

vertex of D is adjacent to each vertex of L, so (1) is trivial. Assume therefore 

that  D and L are nonempty. 

We recall from 1.11 in [8] that  a simplicial complex K is simply connected if 

and only if each cycle p in the graph of K is in the closure of the 2-simplices of K.  

In that  event we say p is t r i v i a l  and write p ~ 1. We appeal to various results in 

[6] and [7] to implement this observation, and use the notation and terminology 

from those references. 

In particular if neither D nor L is connected then K has squares but not 

triangles, so K is not simply connected. Thus we may assume L is connected. 

Suppose p = x0 " .x,, is a cycle in L and let d E D. Then {d, x i ,x i+l)  is a 

2-simplex of K and p is in the closure of such simplices, so p is trivial. Similarly 

each cycle in D is trivial. 

Next d(a, x) = 1 for all a E D and x E L, so the diameter of the graph of K 

is 2. Thus by 3.3 in [6], it suffices to show each r-gon p = z 0 - "  zr  is trivial for 
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r < 5. By the previous paragraph we may assume p is not contained in D or L. 

S u p p o s e p =  xyzx is a triangle. Then we may t akex ,  y E L a n d z  E D. But 

then {x, y, z} is a simplex of K and hence xyzx .,. 1. 

If p = xyzwx is a square then d(x, z) = 2 = d(y, w) as p is not contained in D 

or L, so we may take x, y 6 D and w, y E L. Hence as L is connected, 1.4 in [7] 

says p ..~ 1. 

Finally if p is a pentagon then we may take x0 E D and as d(xo,xl) = 2 for 

i = 2, 3, these vertices are also in D. Hence as p is not contained in D, we may 

assume xl 6 L. Then as x3 E D, d(xl,z~) = 1, contradicting p a pentagon. 

Recall if C, C' are chain complexes then the t e n s o r  p r o d u c t  C ® C'  is the 

chain complex with 

(c®c')m= 69 c,®c  
i + j = m  

with O~ = ~ + j _ _ ~  a~ ® 1 + (-1)~(1 ® Oj). Similarly the t o r s i o n  p r o d u c t  C* C ~ 

is the chain complex with 

( C * C ' ) m =  6 9  Tor(C,,Ci) 
iq-j-~rn 

with O,, = Oi * 1 + (-1)~(1 * Oi). Recall the K u n n e t h  fo rmula ;  cf. p.228 in 

Spanier [16]: 

(2.2): If C and C' are nonnegative free cha/n complexes then for each m, 

Hm(C ® C') ~ (H(C) ® H(C')), , ,  @ (H(C) * H ( C ' ) ) , , _ , .  

Let C(D) be the chain complex of D with coeficients in Z and the usual 

boundry map 0. Define C(D) to be the chain complex with Ci+I(D) = Ci(D) 

and 65i+2 = v0,+l for each i >_ 0, while C'0(D) = Zx0 and 01 : x ~ x0 for all 

vertices x of D. Observe: 

(2.3): H~(D) = g i+ l (C(D) )  for each i. 

(2.4): C(D V L) -~ C(D) ® C(L). 

Proof." Let Y = C(D) ® C'(L) and U = C(D V L). Then 

(s,t)~A(m) 
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where A(m)  is the set of pairs (s, t) with s an/-s implex of D, t a j-simplex of L, 

and i + j + 2 = m, subject to the convention that O is the unique ( -1) -s implex  

of D, L, respectively. Similarly 

Um = z(~ v t) 
(s,t)EA(m) 

subject to the convention s V O = s and O V t = t. 

Moreover the boundry map  for V is described above, while the map  for U is 

s V t H Os V t + ( - 1 ) i (  s v Ot ). Hence the map s ® t ~-* s V t defines an isomorphism 

of chain complexes. 

(2.5): K D  and L are n o n e m p t y  then 

H . ( D  V L) -~ (/4(D) ® H ( L ) ) . _ ,  ® (H(D)  • H ( L ) ) . - 2  

for M1 n > 0. 

Proof: This follows from 2.2, 2.3, and 2.4. 

(2.6): I f  n, m >__ - 1 ,  D is n-connected, eald L is m-connected,  then D V L is 

n + m + 2-connected and / t , ,+m+a(D V L) ~ H,,+1(D) ® H,,,+I (L). 

Proof." As D is n-connected and L is m-connected, Hi(D)  - Hj (L)  ~ 0 for i _< n 

and j _< m. Thus (H(D)  ®/~(L))k -~ (H(D)  * / l (L ) )k  ~ 0 for k < n + m + 2. 

Then apply 2.5 to see that  the homology is as claimed. Further n + m + 2 _> I if 

and only if n _> 0 or m > 0. So if n + m + 2 > 1 then D V L is simply connected 

by 2.1. 

3. Geometric  complexes 

Define a geometric complex over a finite index set I to be a simplicial complex 

K whose graph F is a geometry over I (In the sense of Tits [17]; see also section 

3 of [1].) and such that  each simplex of K is contained in a chamber of F which 

is a simplex of K.  We also denote the type function of F by r : F --~ I .  

Recall that  a geometric complex K is residually connected if the residue of 

each of its simplices of corank at least 2 is connected. The r e s idue  of a simplex 

s is just the link L i n k K ( s )  (cf. Section 3 of [8]) of s at K regarded as a geometric 

complex over I - r(s) .  
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Example: Let G be a group and ~" = (Gi : i E I)  a family of subgroups of 

G. Then we have the geometric complex C(G, ~ )  over I whose set of objects 

of type i is the eoset space G/Gi  and with {Gjx  i : j}  a simplex if and only if 

n Gix j  ~ ~. See sections 3 and 41 in [1] for a discussion of this example. | 

Example: Let F be a geometry over I.  The flag c o m p l e x  of F is the clique 

complex of F regarded as a graph. Notice the flag complex is a geometric complex 

over I if and only if each flag of I' is contained in a chamber. | 

Write Rad(K)  for the subcomplex of all simplices s of K such that K = stK(s). 

For J C_ I the t r u n c a t i o n  of K at J is the subcomplex of all simplices s with 

r ( s )  C J ,  regarded as a geometric complex over J .  

Define the product F ~ A of geometries F and A over I to be the geometry 

over I with (F ~ A)i = F i x  Ai and with (x, a) * (y, b) if and only if x * y and 

a * b. Define the g e o m e t r i c  p r o d u c t  K t~ K ~ of geometric complexes K and 

K ~ over I to be the geometric complex with geometry F t~ F ~ and chambers 

C t~ C' = { ( a , a ' ) : a  E C, a' e C' and r (a)  = r(a ' )} ,  

where C, C'  are chambers of K, K ' ,  respectively. We usually write xa for the 

vertex (x, a) E K t~ K I. 

(3.1): Let D, L be geometric complexes over I. Then D ~ L is connected i f  and 

only i f  D and L are connected. 
! 

Proof." Let K = D ~ L. The projection ¢D : K ~ D is a surjective morphism 

of graphs, so if K is connected, so is D. 

Conversely assume D and L are connected and let ax, by be vertices of K.  

Then there exists a path p = a o ' " a n  from a to b in D. Let C, C ~ be chambers 

in D, L containing b, x, respectively. Let P = u o . . . u ,  be the path in K with 

¢D(P) = P and eL(P)  C C'. Then P is a path from ax to bz for some z E C' of 

type r(b). Let q = x 0 " " x , n  be a path from z to y in L and Q = v0.--vm the 

path in g with eL(Q) = q and Co(Q) C C. Then P Q  is a path from ax to by. 

(3.2): Let D , L  be geometric complexes over I,  K = D ~ L, and ¢ = CD and 

¢ = eL the projection maps of K on D and L, respectively. Then 

(1) I f  p is a cycle in D, x is a vertex in K with ¢(x) = org(p), and C is a 

chamber in L with ¢(x)  E C then there exist a cycle q in K with origin x, 

¢(q) = p, and ¢(q) _C C. 
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(2) The map a : ~rl(K,x) -* r l (D ,¢ (x ) )  × ~ri(L,~b(x)) defined by a(~) = 

(¢.(~), ¢ .(~))  is a surjective group homomorphism. 

Proof." Part (1) is just an argument from the proof of the previous lemma. In 

(2), ~ denotes the equivalence class of the cycle r under the relation -~ defined by 

the closure of the 2-simplices of K,  and 15 is defined similarly for each cycle p of 

D. Then ~.(~) = ¢(r).  By 1.2 in [7], ¢ ,  is well defined, and then of course a is a 

group homomorphism. Further if p, q are cycles in D, L with origin ¢(x), ¢(x),  

we claim there exists a cycle r of K with origin x and ~(r) ,.- p and ¢ ( r )  ,~ q. 

Once we prove this claim we have our surjectivity. 

First if C, C' are chambers of L, D containing ¢(x),  ¢(x), then by (1) there are 

cycles s , t  in K with ¢(s) = p, ¢(8) C_C_ C and ¢(t)  = q, ¢(t) C_ C'. Let r = s .  t. 

Then ¢(r)  ---- ¢(s)¢(t)  = p-¢( t )  and as ¢(t) C C'  and C'  is contractible, ~b(t) ,,~ 1, 

so ¢(r)  ~ p. Similarly ¢ ( r )  -,~ q. 

(3.3): 

(1) If  D ~ L is simply connected then D and L are simply connected. 

(2) D ~ L is residually connected i f  and only i f  D and L are residually con- 

nected. 

(3) D ~ L is a flag complex if and only i f  D and L are flag complexes. 

(4) If  D and L are simply connected, residually connected flag complexes of 

dimension at least 2, then D ~ L is simply connected. 

Proof" Let K = D ~ L and ¢ = tD- Observe that  for simplices s of D and t 

of L of the same type, the residue LinkK(st)  -- LinkD(s) ~ LinkL(t),  so by 3.1, 

K is residually connected if and only if D and L are residually connected. Thus 

(2) holds and similarly (3) holds. 

Suppose K is simply connected. Then by 3.1, D is connected. Further by 3.2, 

~ . :  ~rl(K) -+ ~rl(D) is a surjection. But as K is simply connected, 7rl(K) = 0, 

SO 71"1(D) ~- 0 and hence D is simply connected. 

Conversely assume D and L are simply connected and residually connected 

of dimension at least 2. We prove K is simply connected by induction on m = 

[I - r(Rad(D))[. If m -- 0 then D is a chamber so tL  is an isomorphism and 

hence K is simply connected. Thus we may take m >_ 1. 

Let I = {1, . . .  ,n} with [Di[ = 1 for i > m. Pick C to be a chamber of L and 

for i > m let zi = ~ ' - I ( i )NC and ai = ~'-I(i) ND.  Then S = {a i z i : i  > m} is a 

flag of K of type d = {m + 1 , . . .  ,n}. 
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For d E D define 8(d) = ¢- l ( s tD(d) )  if r(d) ~ J and/9(d) = S if r(d)  E J.  

Claim O(d) is simply connected. This is clear if r(d)  E J as S is contractible. If 

r(d)  ~ J then/9(d) = s to(d)  ~ L and sto(d)  is contractible and hence simply 

connected. Further {d, ai : i > m} C_ Rad( , to(d) ) ,  so/9(d) is simply connected 

by induction on m. 

Next O(d) N 0(e) is connected for all 1-simplices {d, e} of D. For if r (d)  ~ J 

then 8(d) N/9(e) = S, while if r(d),  r (e)  ~ J then/9(d) A/9(e) = st({d, e}) ~ L 

is connected by 3.1. Here we use the fact that D is a flag complex to conclude 

sd(a) n sd(e) = sd({d, e}). 
Finally/9(d)n/9(e)n/9(/) # o for all 2-simplices {d, e, / }  as S C/9(d)n/9(e)n/9(/) 

and i f  S = o then ~ = ,~ and {d~, ey , / z }  C_/9(d) n/9(e) n /9( / )  for ~, y, z e O of 

type r(d),  v(e), T(f) .  

Therefore/9 is a 1-approximation of K by D in the sense of [8]. For if s = 

{ax, by} is a 1-simplex of K then s C_/9(a) unless r (a)  E J,  while if ~'(a),-r(b) E J 

then as J ¢ t ,  s c O(v) for r(v) ¢ J. 
Let a, b be vertices of D and cx E O(a) f) O(b). Then either 

(i) r (a)  or r(b) is in J and cx E S, or 

(ii) a, b E c a- and r(a) ,  l"(b) ~ J. 

In either case a, b E ca-. 

Let 9r(cx) = {d E D : cx E/9(d)}. To complete the proof of the lemma using 

Theorem 3 of [8], we verify that ~" satisfies the hypotheses of that Theorem. If 

cx E S then cx E/9(d) for all d E D so ~r(cz) = D is connected and in particular 

a and b are in the same connected component of ~(cx) .  

Thus we may assume (ii) holds. Then F(cx)  = stD(c)-- Rad(D).  In particular 

if r(c)  ~ g then acb is a path in F(cx).  Thus we may take ~'(c) E J .  Then 

Jr(cx) = D - R a d ( D ) .  But as D is residually connected, D - R e d ( D )  is connected 

when rn > 1. Therefore we may asume m = 1. In particular v(a) = r(b). 

Let L' be the truncation of L at J .  As dim(L)  >_ 2, L is residually connected, 

and as m = 1, L' is connected. But/9(a) fq O(b) = Rad(D) ~ L' ~- L', and hence 

is connected. Thus cx is connected to czi E S in/9(a) fq/9(b) and a is connected 

to b in 5t'(czi) = D. So the proof is complete. 

(3.4): If  D and L are residually connected flag complexes then the map a of 

3.2.2 is an isomorphism r l ( D  ~ L, x) ~- ~q(D, ¢(x)) x 7rl(L, ¢(x)) .  

Proof." Let 6 : / )  ~ D and A : L ~ L be the universal coverings of D , L  (el. 
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section 1 of [8]) and let /~ = D ~ L. Define ~:  /~" ~ g by ~(uv) =/f(u)A(v). 

Then ~ is a simplicial map and as 6 and A are surjective, so is ~. Similarly 

~,~ : s tR(uv ) ~ stg(~(uv)) is an isomorphism as Stg(UV ) = StD(U ) ~ stL(v ) 

and stg(~(uv)) = stD(~(u)) ~ stL(A(v)). So ~ is a connected covering of g .  On 

the otherhand by 3.3, /~ is simply connected, so ~ is even the universal covering. 

Recall the discussion of local systems in section 1 of [8]. Notice ~ - l (xy)  = 

/f- l(x)  x A-l(y)  so the local system R e satisfies Fe(xy) -- F6(x) x FA(y) and 

F~y,,~ -- F~,~ × F ~ .  Now if fi • ker(a) then ¢(u) .-~ 1 ,.~ ¢(u),  so 17~(~) = id = 

F A and hence F ,  ~ ~ x = F~(,) x F~(,) = id. Therefore fi = i ,  so a is injective, 

completing the proof. 

Following Quillen in [14], define an n-dimensional simplicial complex K to be 

C o h e n - M a c a u l a y  (abbreviated CM) if K is (n - 1)-connected and LinkK(s) 

is (n - k - 2)-connected for each k-dimensional simplex s of K.  

(3.5): Assume K is the flag complex o[ a geometry r over I and K is Cohen- 

Macaulay. Then each truncation o[ K is Cohen-Macaulay. 

Proo£" Let L be the truncation of K at J C_ I. Then if I,  J have order n + 

1, m q- 1, respectively, then K, L have dimension n, m, respectively. We proceed 

by induction on n. If n = 0 then K has no nonempty proper truncation, so the 

induction is anchored. 

Let t : L ~ K be the inclusion map. Then for s a k-simplex of K,  

f] 
x E s  

is the truncation O(s) of stK(s) at J ,  as K is the flag complex of F. Hence if 

~ r(s)N J then O(s) is contractible. On the otherhand if ~ = r(s)N J then O(s) 

is the truncation of Link(s) at J ,  and hence is C M  by induction. In particular 

O(s) is (m - 1)-connected. Whust is locally (m - 1)-connected, (in the language 

of [8]) so by Theorem 1 in [8], L is (m - 1)-connected. 

Finally if t is a simplex of L then LinkL(t) is the J- truncation of Linkg( t )  

and hence by induction is C M  of dimension (m - k - 1). So L is indeed CM. 

4. A rank  3 g e o m e t r y  for rank 2 g r o u p s  

In this section G is a rank 2 group of Lie type with Tits system (G, B, N, S). 

Let S = {Sl,S2} and Gi = (B, si) the ith maximal parabolic. Let Ga = N, 
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I = {1,2,3}, ~" = (G~ : i e I) ,  I" = F(G,.~-) the coset geometry defined by ~', 

and K = C(G,~ )  the geometric complex define by ~'. (cf. Section 3 in this 

paper and Sections 3 and 41 in [1]) Observe G = (~') and Gi = (Gii, Gik) for all 

distinct i ,j ,  k from I, where Gij = Gi N Gj. Thus K is residually connected. (cf. 

3.2 in [3]) Further from the BN-pair axioms, N is transitive on chambers over 

N. Thus 

(4.1): K is residually connected, K is the flag complex of F, and G is flag 

transitive on F. 

The main result of this section is: 

THEOREM 4.2: K is simply connected. 

The proof involves a short series of reductions. As F is residually connected, 

K is connected. Thus as K is the flag complex of F it remains to show F is 

triangulable in the sense of [6]. 

Let B be the building of F. Write (3 for the set of objects of B. Thus (9 = 

F1 U F2. Let .A be the apartment set of B and ~N the apartment stabilized by 

N; then the map ~'Ng ~ Ng, g E G, is a bijection between .4 and F3 and we 

identify ,4 with F3 via this injection. Thus subject to this convention, incidence 

in F between objects and apartments is inclusion while incidence in F between 

objects is incidence in B. That  is F is isomorphic to the graph of objects and 

apartments in the building B. 

Write 0 for the incidence graph on the set 0 of objects, and given x, Y E 0 

define do(z, Y) to be the distance from x to Y in O. As B is a linear space, if 

x,y E 0 with do(x,y) = 2 then there exists a unique z + y  E O(x,y). In this 

case we say x and y are eo l inea r  and x + y is the unique l ine through x and y. 

As K is a geometric complex: 

(4.3): The triangles xyzx o f f  are in one to one correspondance with the flags 

{x, y, z} of F, and each such flag consists of a pair  of incident objects plus an 

apartment containing the pair. 

(4.4): 

(1) If  {x, y} and {a, b} are chambers in B then there exists an apartment 

with {x,v,a,b} C ~. 
(2) Let d = diam( O ). Then O is a generalized d-gon. In particular if  do(x, y ) < 

d for some x, y E 0 then there exists a unique geodesic p(x, y) from x to y 
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in 0 and p(x, y) C ~ for each apartment ~ conta/ning x and y. 

(3) I f  x, y • 0 with do(x ,  y) = d = diem(O) then for all a, b • O( x ), do(y,  a) = 

do(y,  b) = d - 1 and there exists ~ • A with {x, y, a, b} C ~. 

Proof." Part  (1) is one of the building axioms. Let d = diem(O).  

It is well known that O is a generalized d-gon; for example let x, y • E • .A 

and z • O(x) n ~ with do(y,  z) = do(y,  x) + 1. Then {z, z} is a chamber in B so 

by 42.3 in [1], each path from x to y in O of minimal length is in ~. Hence as 

is a d-gon that path p(x, y) is unique and contained in ~. Thus (2) is established. 

Assume the hypotheses of (3). Then as G is of Lie rank 2, G~ is a maximal 

parabolic of G and as do(x ,  y) = d, Gx = RGry,  where R is the unipotent radical 

of G~, G ~  is a Levi factor of G~, and G~ is 2-transitive on O(x). Now R is trivial 

on O(x),  so G~y is 2-transitive on O(x).  Therefore (3) follows as there exists an 

apartment ~ containing x and y and as ~ is a d-gon, ~ n O(x) is of order 2 and 

consists of the objects of distance d - 1 from y in ~. 

(4.5): xyz  is a path of  length 2 in r with dr(x,  z) = 2 i f  and only i f  one of  the 

following holds: 

(1) x, z • {9 are colinear and y = x + z. 

(2) z , z • O , z ~ O ( x ) , a n d y • A .  

(3) x • 0 ,  z • .,4 and y is the unique member  of O(x)  N z. 

(4) x, z E A a n d y E x n z .  

Proof: This is straightforward except possibly for the uniqueness statement in 

(3). But if y, a E O(x)  (1 z are distinct then x = y + a • z by 4.4.2, contradicting 

dr(x,  z) = 2. 

Remark: Notice that by 4.5 that if x, y are distinct members of O then either 

y 6 O(x)  and dr(x,  y) = 1 or dr(x,  y) = 2. I 

Indeed: 

(4.6): I f  x, y 6 0 with d o ( z , y )  > 2 then F(x,y)  = {~ 6 .A : x , y  6 ~.}. 

(4.7): I f  x, y 6 0 are colinear then each square through x and y in F is triviaJ. 

Proof." Let p = x0 . . .  x4 be a square with x0 = x and x2 = y. Then x + y 6 x~ 

for each i by 4.4.2 and 4.5. Thus p is trivial. 
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(4.8):  I_f x, y E (9 with y q~ x j- then each square through x and y is trivial. 

Proo£" By the Remark  above, m = do(x, y) > dr(x, y) = 2 and by 4.6 and 

4.7 we may  assume F(x, y) consists of the apar tments  containing x and y. Let 

d = diam(O). If  m ~ d then by 4.4.2, p(x, y) C_ ~ for all E E F(x,  y). Hence 

p(x, y) is a pa th  from x to y in F(E,  6) for each E, 8 E F(x, y) and hence the 

square p = xEySx is trivial by 3.4 in [6]. 

So assume m = d. Let a E O(x) M ~ and b E O(x) n 8. By 4.4.3, there exists 

• --. E F(x, y) containing a, b. Then  by the previous paragraph  the squares aEyEa 

and bEySb are trivial, so as p is in the closure of these squares and the triangles 

xyiyi+lx determined by the pa th  Y0 ""Y4 = EaEb6 in F(x),  p is trivial. 

(4.9):  A11 squares in F are trivial. 

Proof: Let p = x0 " "  x4 be a square in F. If xi,xi+2 E O for some i the l emma 

holds by  4.8. If  x0 E O and x2 E .4 then by 4.5, r (x0 ,  z2) consists of  the unique 

member  of x2 O O(xo), contradict ing x l , x s  E F(x0,x2) .  This leaves the case 

xo,x2 E .4. But  then z l , x s  E O, a case already handled.  

(4 .10) :  / . fp  = z 0 . .  "Xn iS a nontrivial n-gon then n = 6 and, translating the 

origin of p i f  necessary, xi E 0 for i even and xj E .4 for j odd. 

Proof." By 4.3 and 4.9, n > 4. Wi thou t  loss x0 E O. If n > 6 then d(zo,xi)  >_ 3 

for 2 < i < n - 2, so by 4.5, xi E .4. But  xi E .4 implies xi+~ E 0 for e = + l ,  so 

n = 6, xs E ,4, and z2,x4 E O. Then  by symmet ry  between x0 and x2 and x4, 

we have xl ,  x5 E .4. 

So take n = 5. Now if x2,x3 E O then {z2,xs}  is a chamber  o r B ,  so by 4.4.1, 

xo,x2,xs E ~ E .4. But then p is trivial by 1.5 in [7]. Thus  we can assume 

x2 E .4, so tha t  xl ,  xs E O. Now apply the same argument  to xs in place of x0 

to complete the proof. 

We are now in a posit ion to complete the proof  of  Theorem 4.2. For if F is 

not  s imply connected then we can choose a nontrivial  hexagon p = x0 . . .  x~ as 

in 4.10. Let z = x0 and pick p so that  m = min{do(x,  xi) : i = 2,4} is minimal.  

Notice if do(x, z2) = 2 then q = z ( z  + x2)x2 . . . xn  "~ p and by 4.10, q is trivial 

as x + z2 ~ .4. But  then p ~ 1. Therefore m > 2. 

We proceed by induct ion on m, with the previous paragraph  anchoring the 

induction.  Let y e O(z)  N x~ with do(y, x2) = m - 1 and  ~ an  apar tment  

containing y and x4. Then  r = xy~x4xsx  is a 5-cycle and hence trivial, while 
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do(y,x~) = m - 1, so by induction on m, q = yxlx2xax4~y " 1. Hence as p is 

in the closure of q, r, and the triangle xxl yx, p ,~ 1, completing the proof. 

5. p-group complexes  of  a f ini te  g r o u p  

In this section p is a prime divisor of the order of a finite group G. Let A(G) = 

Ap(G) be the commuting graph on the subgroups of G of order p and K(G) = 
Kp(G) the clique complex K(Ap(G)) of the graph Ap(G). Recall the B r o w n  

c o m p l e x  Sp(G) of G at p is the order complex of the poset of all nontrivial 

p-subgroups of G. The QuUlen c o m p l e x  Ap(G) is the order complex of the 

poset of all nontrivial elementary abelian p-subgroups of G. 

Write A~(G) for the simphcial complex whose vertices are the maximal ele- 

mentary abelian p-subgroups of G and whose simplices are the sets s of vertices 

such that NAes A # 1. 
Write Bp(G) for the subcomplex of the Brown complex Sp(G) consisting of 

those nontrivial p-subgroups X of G with X = Op(Na(X)). The complex Bp(G) 
is the B o u c  c o m p l e x  for G at p. 

It is known that the complexes Sp(G), .Ap(G), Kp(G), .A•(G), and Bp(G) 
all have the same homotopy type; we supply proofs of these equivalences in a 

moment. We usually work with K(G) in this paper. As observed by Quillen in 

Proposition 2.4 of [14] in the context of the Quillen complex: 

(5.1): (Quillen) If Op(G) # 1 then Kp(G) is contractible. 

Proof." Let Z = ~I(Z(Op(G))) and a = K(Z). Then a is a simplex of K(G) 
such that a N s ± # ~ for each simplex s of K(G), so by 5.1 in [8], K(G) is 

contractible. 

(5.2): Kp(G), .Ap(G), and ¢4*p(G) .have the same homotopy type. 

Proof." This was observed independently by Alperin and in 9.7 of [7]. We fill 

in details of the proof sketched in [7]; it is a variant of a proof due to Alperin. 

Let ~" be the cover of .Ap(G) consisting of the subcomplexes F(A) = .Ap(A), A E 

A~(G). Then ~c is a c o n t r a c t i b l e  cove r  of Ap(G); that is for each £ C_ A~(G), 
I(E) = NAeX F(A) is contractible or empty. Namely I (£)  = Ap(NAe~ A), while 

for A E Ap(G), Ap(A) is contractible as the map E ~ A for all E e Ap(A) is 

contiguous to the identity. 

As ~ is a contractible cover of .Ap(G), .Ap(G) has the same homotopy type as 

the nerve g(~-)  of this cover; cf. 4.4.1 of [8]. But of course the map F: A H F(A) 



18 M. ASCHBACHER Isr. J. Math. 

is an isomorphism of .A;(G) with N(U), so .A;(G) and Ap(G) have the same 

homotopy type. 

Similarly .A~(G) and Kp(G) have the same type. Here we consider the cover 

7" of K(G) via the sets T(A) = K(A), A E .A~,(G). By 5.1, NAeuT(A) = 

K(NAe u A) is contractible or empty for each/4 C_ .Ap(G), so the same argument 

works. 

(5.3): (Quillen) .,4p( G) and Sp(G)) have the same homotopy type. 

Proof: This is Proposition 2.1 in [14]. As ~4p(S) is contractible for each S E 

Sp(G) by 5.1 and 5.2, the lemma follows from 1.3. 

(5.4): (Bouc) Sp(G) and Bp(G) have the same homotopy type. 

Proof." In [10], Bouc supplies only Lemma 1.3 as a proof; we include details 

here. Let B = Bp(G) and S -- Sp(G); by 1.3 it suffices to show S* C_ B. Let 

X E S, T -= Sp(NG(X)), and define ¢ :  S(> X) ~ T(> X) by ¢(Y) =- Ny(X) .  

Then ¢ is a map of posets and for r E T(> X), ¢-1(T(> r ) )  = {Z > X :  r _< 

Nz(X)}  = S(> Y) is contractible. So by Proposition 1.6 in [14], ¢ is a homotopy 

equivalence. Thus X E S* if and only if X E T*, so without loss, X _~ G. 

Now the map Y ~ Y/X is an isomorphism of S(> X) with Sp(G/X).  Fur- 

ther if Op(G/X) 4 1 then Sp(G/X) is contractible by 5.1-5.3. Thus S* C_ B, 

completing the proof. 

(5.5): Let G be of Lie type of characteristic p and Lie rank 1. Let B be the 

building of G regarded as a geometric complex. Then 

(1) Kp(G) and B have the same homotopy type. 

(2) I3 is Cohen-Macaulay of dimension 1 - 1. 

(3) Kp(G) is (l - 2)-connected but H,_,(Kp(G)) • O. In particular Kp(G) is 

simply connected if and only if I > 3. 

(4) Each truncation of B is Cohen-Macaulay. 

Proof." As G is of Lie type and characteristic p, the members of Bp(G) are the 

unipotent radicals of the proper parabolics of G, and for Q, P E Bp(G), Q _< P 

if and only if No(P) < No(Q). Thus as B is the order complex of the poset of 

proper parabolics, B and Bp(G) are isomorphic. So 5.2 through 5.4 imply (1). 

Next (2) is well known. For example B is simply connected by [17], while the 

homology of/~ is known from the Solomon-Tits Theorem [15]. Then (1) and (2) 

imply (3) while (2) and 3.5 imply (4). 



Vol. 82, 1993 SIMPLE CONNECTIVITY OF p-GROUP COMPLEXES 19 

6. C o n n e c t i v i t y  o f  p - g r o u p  c o m p l e x e s  

In this section we continue the hypotheses and notation of the previous section. 

Write £n(G) = £~(G) for the set of elementary abelian p-subgroups of G of rank 

n. We sometimes view £~(a) as a graph with A adjacent to B if [A, B] = 1; 

we say E~(G) is c o n n e c t e d  if this graph is connected. The group r},a(a), 
P • Sylp(G), is defined in section 46 of [1], where its relation to the graph £~(G) 

is discussed. 

Ap(G) is disconnected i f  and only i f  G has a strongly p-embedded sub- (6.1): 

group. 

Proof: 

(6.2): 

This is well known; see for example 44.6 in [1]. 

A,(G) is disconnected i f  and only if  either Op(G) = 1 and mp(G) = 1 or 

( G) ) / ( ( G) ) ) is one of the following: 
(1) Simple of Lie type of Lie rank 1 and &aracteristic p. 

(2) A2p with p >_ 5. 

(3) =an(3), La(4), or U , ,  with p = 3. 

(4) Aut(Sz(32)),  =F4(2)', Me, or M(22) with p = 5. 

(5) ./4 with p = 11. 

Proof." This follows from 6.1 and the list of groups with a strongly p-embedded 

subgroup. See 24.1 in [12] for a proof that the list above is complete. 

(6.3): Let x E Ap(G), H = No(x), and P E Sylp(H). Then the following are 

equivalent: 

(1) h(x)  is connected. 

(2) L ink~ , (~) ( , )  is connected. 

(3) E~(H) is connected. 

(4) Either IE (H)I = 1 or 

(a) For all E 6 E~(H), mp(CH(E)) > 2, and 

(b) H = r~a(H ). 

Proof: First as g ( G )  is the clique complex of A, A(x) = Link(x)  for each x E A. 

Next given a path q = Y o ' " Y ,  in h(x), observe p(q) = (xyo) . . .  ( xy , )  is a path in 

£2(H). Conversely given a path r = Eo . . .  Em in £2(H), notice r(r)  = Z o ' " z m  

is a path in h(x), where zi is any member of A(E/) - {x}. In particular (1) is 

equivalent to (2) and (3). 
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Next if 1~2(H)l = 1 then clearly £2(H) is connected. On the otherhand if 

E E ~2(H) with mp(CH(E)) = 2 then E is an isolated vertex in • (H) ,  so if 

~2(g)  is connected then {E} = ~2(g).  Hence in proving the equivalence of (3) 

and (4) we may assume condition (4a) holds. Now 46.7.3 in [1] completes the 

proof. 

(6.4): Let x E Ap(G), R ~_ G with R < Op,(G), and ¢ = G/R. Then 

(1) / . fh(x) is connected then A(5:) is connected. 
(2) If Kr(G ) is simply connected then Kp(G) is simply connected. 

Proof: If q = y 0 " "  y ,  is a path in A(x) then q = .~0"" Y,, is path in A(~), so 

(1) holds. 

Assume K = Kp(G) is simply connected, rap(G) > 1, and let D = Kp(G). 

Now f : K --* D defined by f(x) = ~ is a simplical map. Further each k-simplex 

of D is of the form g = {~0,. . .  ,~k} for some k-simplex s = {x0, . . .  ,xk} of 

K and f- l(~±) = Kv(CG(s)R) ' so f - ' ( ~ ± )  # O and if k = 0 then f - l ( ~ ± )  

is connected by 6.1 and 6.2. Namely 1 # xo < Op,,v(CG(xo)R ) so we have 

connectivity unless mp(CG(Xo)) = 1. But in that event mv(G ) = 1, so as K is 

connected, z0 _<. Op(G), and then Kv(CG(xo)R ) is connected. 

We have shown f to be locally connected in the language of [8]; thus (2) 

follows from Theorem 2 of [8]. 

(6.5): Assume the Conjecture holds in all applicable sections of G and assume 

for all x • Ap(G) that h(x)  is connected. Then if Kp(G/O¢(G)) is simply 

connected, so is Kp(G). 

Proof." Assume K(G/O¢(G)) is simply connected; then it remains to show 

K(G) is simply connected. Proceeding by induction on the order of G, take G to 

be a minimal counter example. In particular G = (Ap(G)). Let H be a minimal 

normal subgroup of G contained in O r, (G). 

Suppose G = AH for some A • .Ap(G). Then by minimality of H,  either 

H is a q-group for some prime q # p and A is irreducible on H,  or H is the 

direct product of the A-conjugates of a nonabelian simple p'-group L. In the 

second case the lemma holds by the Conjecture. In the first as A is irreducible 

on H,  Op(G) # 1, so K(G) is contractible. Thus we may assume G # AH for 

A • A(G). 
Let G = G/H. Then by 6.4, our hypotheses are inherited by K(G) ,  so by 

induction on the order of G, K(G)  is simply connected. Hence by 5.2, Q = .Ap(G) 
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is simply connected and it remains to show P = .Ap(G) is simply connected. We 

will do so by appealing to Lemma 1.4. 

Let f : P --* Q be the projection f : A ~-~ .4. Then f is a map of posets. 

Notice for A E P,  A is of height h in Q if and only if rap(A) = h + 1. By 

induction on the order of G, f - i ( Q ( <  A)) = .Ap(AH) is simply connected if 

rap(A) > 2, since then A(x) is connected for each x E A(AH) by 6.3. Similarly if 

mp(A) = 2 then Ap(AH) is connected by 6.2. That  is hypothesis (1) of Lemma 

1.4 is satisfied. 

So it remains to verify hypothesis (2) of Lemma 1.4. Now for A E P of 

p-rank 1, A(A) is connected by hypothesis, so P ( >  A) and hence also Q(> .4) is 

connected. Finally let rap(A) = 2. Then Q(> .4) # ~ unless mp(CG(A)) = 2. 

But in that case as A(z) is connected for z < A of p-rank 1, 6.3 says {A} = 

C~(CG(x)). Hence H = FA,I(H) < NG(A), so A = (A(AH)), and hence .Ap(A) = 

.Ap(AH) is simply connected by 5.1. Thus we have verified hypothesis (2) of 

Lemma 1.4, completing the proof. 

(6.6): If Op(G) = 1, Ap(G) is connected, and rap(G) = 2, then Hl(Kp(G)) ~ O. 

Proof: If A(G) is a tree then as A(G) is finite and bipartite, G has a fixed point 

on A(G), contradicting Op(G) = 1. So there exists an r-gon q in A(G). By 3.1.4 

and 3.1.5 in [8], q determines a cycle 0 # ¢(q) E Z1(.A(G)), so as dim(A(G)) = 1, 

HI(.A({~)) # 0. 

The next lemma is essentially Proposition 2.6 in Quillen [14]. 

(6.7): Kp(G × H) has the same homotopy type as Kp(a) y Kp(H). 

Proof: Let L = K(G ×H) and D = K(G) VK(H).  Define t : D ~ L by 

t(x) = x and ¢ : L ~ D by ¢(a) = Ca(a) if Ca(a) # 1, and ¢(a) = el l (a)  if 

Ca(a) = 1, where Cy : G x H ~ Y is the projection. Then t and ¢ are simplicial 

maps with ¢ o t --- idD. Further a ± C_ t(¢(a)) ± for all a E L, so by 9.3 in [7],t o ¢ 

is homotopic to idL. 

(6.8): Let g < G such that Kp(CH(E)) is(n-j+l)-connectedfora11E E $~(G) 

and aH 1 < j _< n + 2. Let L: Kp(H) ~ Kp(G) be inclusion. Then 

(1) t :  Kp(H)" --* Kp(G) n is a homotopy equivalence ofn skeletons. 

(2) Kp(H) is n-connected if and only if Kp(G) is n-connected. 

(3) If n > 1 then t , :  ~'I(Kp(H)) --* 7q(Kp(G) is an isomorphism. 

Proof." Let s = (x0 , . . .  ,xk) be a k-simplex in K(G) and E = (x0, . . .  ,xk). 
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Then E e £~(G) with j < k + 1 and t - l (s tg(c)(s) )  = K(CH(E)).  So n - k < 

n - j  + 1 and hence by hypothesis, t is locally n-connected in the sense of [8]. 

Then Theorem 1 in [8] completes the proof. 

(6.9): Let g ~_ G such that Kp(CH(x)) is connected for M1 x • hp(G) - Ap(H). 

Assume Kr( H) is simply connected. Then Kp( G) is simply connected. 

Proof: Let t : Kp(H) -* K,(G)  be inclusion. As g _~ G, for all E • SP(G), 

A(CH(E)) ¢ ~, so t- l(stg(G)(s)) • ~ for all simplices s of K(G). Further 

for x • A(G), t-l(stK(G)(x)) = g (Cg(x ) ) .  Now Kp(CH(x)) is connected by 

hypothesis if x ~ H,  while if x < H the same is true by 5.1. Thus t is locally 

connected in the sense of [8], so Theorem 2 in [8] completes the proof. 

(6.10): Let G = G / O f ( G )  and 1 # H ~_ G. Assume the Conjecture holds in 

proper sections of G and 

(1) g , ( H )  is simply connected. 

(2) For MIx • A,(G) - ap(H) ,  Kp(CH(x)) is connected. 

(3) For all x • A,(H),  A(x) is connected. 

Then Kp(G) is simply connected. 

Proof: Let x E Ap(G) - Ap(H) and y E A(x). Then as H ~ G, A(CH(xy)) # 

~, so as Ap(CH(x)) is connected, A(x) is connected. By hypothesis, A(x) is 

connected if x • A(H). So by 6.5, we may assume Of(G)  = 1. Now 6.9 

completes the proof. 

7. p2-subgroups whose centralizer is of  p-rank 2 

In this section p is a prime and G a finite group. Let A(G) = Ap(G) be the 

commuting graph on the subgroups of G of order p. Assume rap(G) > 2 but 

Ep2 ~ A < G with rap(Ca(A))) = 2. 

(7.1): Let A < P 6 Sylp(G) and Z = a , ( z ( P ) ) .  Then 

(1) A = (Ap(CG(A))). 

(2) Z < A. 

(3)  IZl = p. 

(4) Either 

(a) m,(CG(a)) = 2 for each a e A - Z, or 

(b) A • Sylp(Ca(A)) and (Ap(Ya(A))) induces SL2(p) on A. 
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Proof." As mp(CG(A)) = 2 = mp(A), A(A) = A(CG(A)),  so Z < A. If Z = A 

then 2 = mp(CG(A)) = mp(G) > 2, a contradiction. So (1)-(3)  hold and it 

remains to prove (4). 

As mp(P) = mp(G) > 2, there is Y E A(Np(A))  - A(A). Similarly we may  

assume Z # X e A(A) with m p ( g e ( x ) )  > 2, so there is V • A(NN~(x)(A))  - 

A(A). Then  (II, U) induces SL2(p) on A, so it remains to prove A • Sylp(CG(A)). 

We m a y  assume R = Cp(A) • Sylp(CG(A)). Let M = NG(A) and H = 

CG(A). Then  by a Fratt ini  argument  M = HNM(R) ,  so NM(R) is transit ive on 

A # . 

Next as rap(P) > 2 we may  choose Z Y  ~ P. (cf. Exercise 8.4 in [1].) As 

Y < NM(R)  and NM(R)  is transit ive on A # we may  take g = (Y, U) < NM(R) 

and U • y g .  As Z Y  ~_ P, [P : Cp(Y)[ = p so R = CR(Y)A.  Then  as U • y g  

also R = CR(U)A, so R = A x CR(K). Hence by (1), R = A, complet ing the 

proof  of  (4). 

In the remainder  of this section Z and P are as in l emma 7.1. 

(7 .2) :  Assume Op,(G) = Op(G) = 1. Then one of the following holds: 

(1) G is almost simple, A <_ F*(G), and (Ap(Na(A))) induces SL2(p) on A. 

(2) G is almost simple and Z is the unique X • Ap(A) with mp(Na(X) )  > 2. 

(3) p is odd, G has p components {Li : 1 < i < p}, these components are per-  

muted regularly by each X • A(A) - {Z}, mp(Li) = 1, and (A(Na(X)) )  = 

X x L with L ~- L1. 

Proof: Let H = F*(G). Then  H = L1 × " "  × Ln is the direct p roduc t  of the 

components  of  G. Fur ther  Z N H ~ 1, so Z _< H.  

Notice if 7.1.4.b holds then A = (Z NG(A)) <_ H. More generally assume 

A < H.  Then  2 = rap(Ca(A)) >_ Y]~i mi, where mi = 1 if mv(Li ) = 1 and mi >_ 2 

otherwise. We conclude either H is simple or n = 2 and mp(Li)  = 1 for each i. 

But  in the later case p ~ 2 and hence A = Q I ( P  N H)  < Z, contradict ing 7.1.3. 

Thus  (1) or (2) holds in this case. Hence we may  assume A ~ H and 

mp(NG(X))  = 2 for Z ~- X • A(A) and n > 1. Now i f X  acts on some 

produc t  K = I'[i Li of components ,  then there exists Y • A(CK(A)) .  So as A = 

(A(CG(A))),  Y < AIqH = Z. It follows that  X is regular on the components  of G, 

so n = p. Also N H ( X )  = L ~ L1, so as mp(Na(X) )  = 2, rap(L1) = mp(L) = 1. 

Therefore p is odd  and (3) holds. 

(7.3):  Assumep = 2. Then 
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(1) A N O2(G) < Z. 

(2) m2(Ca(a)) = 2 for each a 6 A - Z. 

(3) One of the following holds: 

(a) z < 

(b) F*(G/O(G))  ~- L2(q 2) with q odd, and A induces inner-diagonal automor- 

phisms. 

(c) 02 ' (G/O(G))  is Ls(4) extended by a graph-field automorphism. 

Proof." If (2) fails then by 7.1.4, A 6 SyI2(CG(A)). But then by a lemma 

of Suzuki (cf. Exercise 8.6 in [1]) P is dihedral or semidihedral, contradicting 

m2(G) > 2. Hence (2) holds. 

Let a 6 A - Z. We observed during the proof of 7.1 that there is Ep2 ---- 

E _4 P.  Then by (2), a G N Cp(E)  = 0 ,  so (1) holds by Thompson transfer. 

To prove (3) we may take Ooo(G) --- 1. Then G is almost simple by 7.2; 

let F*(G) = L. Further a induces an outer automorphism on L such that 

m2(CL(a)) = 1. Therefore S C N s ( P )  = ~ so L is described in the Main Theorem 

of [11] and we conclude that either L ~- L2(r) with r odd, and a induces a di- 

agonal automorphism, or L ~ La(4) and a induces a graph-field automorphism. 

In the first case as m2(G) > 2, r is a square, so (35) holds. In the second as 

m2(Ca(a))  = 2, O2'(G) = AL and (3c) holds. 

(7.4): Let p = 2 and O(G) = 1 ~t O2(G). Then one of the following holds: 

(1) F*(G) = O2(G). 

(2) F*(G) = L1 × L~ with L~ # L,  ~- SL2(q), q odd, or AT~Z2. 

(3) F*(G) = L • K where A K  is dihedral, semidihedral, or SLy(r), odd, 

extended by a diagonal outer automorphism, and either [L,a] = 1 and 

L ~- SL2(q), q odd, or AT~Z2, or a induces an outer automorphism on 

L ~- SL2(q) or Sp4(q), q odd, A , / Z 2 ,  n = 7,8,9, or SL;(q) ,  q = - e  

mod 4. 

(4) E(G) ,2_ SL2(q), q odd, and a induces a diagonal outer automorphism on 

E(G). 

Proof'. Let Q = O2(G) and a s sumeE(G)  # 1. Let a 6 A - Z  a n d K a n A -  

invariant subnormal subgroup of F*(G). Then Z _< K.  In particular Z < Q, so 

even Z < 02(K) .  

If A 6 SyI2(CAK(A)) then by Suzuki's Lemma, K A  has dihedral or semidi- 

hedral Sylow 2-subgroups. Hence as Z < o 2 ( g ) ,  either K _< Q or g ~- SLy(q) 
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for some odd q, and a induces a diagonal outer automorphism on K.  In particu- 

lar if K1 and K2 axe two such distinct subgroups with [K1,K2] = 1 and IK~[ > 4, 

then a inverts an element ki of order 4 in Ki. But then E4 ~- (kl k2, Z) < Ca(A), 

so A = (klk2,Z) <<_ K1K2, impossible as a induces an outer automorphism on 

Ki. 

On the otherhand if A ~ SyI2(CAK(A)) then CK(A) contains an element 

of order 4, and if K1 and K2 are two such commuting subgroups with elements 

ki of order 4 then again A = (klk2,Z) <_ K1K2. 

Next if J # j a  for some component J of G then as E ( C j j ,  (a)) ~- J / I  

where I = {j e J :  j a  = j - l }  and m2(Cjj , (a))  = 1, J N  Ja  = 1 and m2(g)  = 1. 

Further by the previous paragraph,  if we let K = j j a  then ACa(K)  has dihedral 

or semidihedral Sylow 2-groups, so as E4 - Z(K)  < Z(Ca(K)) ,  Z (K)  = Ca(K).  

So (2) holds. 

So assume A fixes each component J .  Then Z _< J.  Now as m2(Ca(a)) = 2, 

SCN3(P) = 0. Hence J is described in 1.2. 

Now if a induces an inner automorphism on J then a = cj, c E CG(J), 

j e J of order 1,2, or 4. If j is an involution then A = A(Ca(A)) = Z( j )  <_ J, 

contradicting 7.3.1. On the otherhand if IJ[ = 4 then CAj(a) = (a) × Cj( j ) ,  so 

rn2(Cj(j)) = 1, which by Suzuki's Lemma applied to J /Z  forces J ~- SL2(q) or 

AT~Z2. As j is inverted by an element of J of order 4 and A = A(Ca(A)), c is not 

inverted by an element of Ca(J)  of order 4 and Cc(J(c))  is cyclic. It follows from 

Suzuki's Lemma that  Ca(J)  is cyclic or dihedral. But then A ~ T • SyI2(G), 

so as m2(T) > 2, m2(CT(A)) > 2, a contradiction. Finally if [a, J] = 1 then by 

paragraph two, (3) holds. 

Thus a induces an outer automorphism on each component J of G. Then 

by paragraphs two and three, (3) or (4) holds. 

(7.5): Let p be odd and Op,(G) = 1 # Op(G). Then either 

(1) F*(G) = Op(G) 

(2) F*(G) = Op(G)L where L = E(G) is quasisimple, Op(G) is cyclic, A -- Z X  

with Z = A N F*(G) < Op(G) N L, L ~ SLy(q) with q = e mod p, and X 

induces diagonal outer au~omorphisms on L. 

Proof." Let Q = Op(G) and assume Q # F*(G). Then L = E(G) # 1 and in 

particular A(L) ~ Q. As A = (A(Ca(A))), A N Z(Q) # 1. As A(L) ~ Q, n ~ Q, 

s o A N Q = A f )  Z ( Q ) = Z .  L e t Z # X 6 A ( A ) .  



26 M. ASCHBACHER lsr. J. Math. 

If X moves some component J of G then { j x )  f'l N G ( X )  = I is a homo- 

morphic image of J .  As p # 2, A(I)  ~ Q. But A(I)  ___ A(Cc(A))  _ A, a 

contradiction. So A fixes each component d of G. Thus O ~ A(Cj(A))  C A, so 

either Z < J or rap(J) = 1 and we may take X = A fq J .  But in the latter case 

rap(G) = rap(Ca(A)) = 2, a contradiction. Now X acts on some Ep2 ~- B j  < J .  

So i f K  is a second component then as [ BK Bj ,  A] < Z, m p ( C G ( A ) N B K B j )  > 2, 

a contradiction. Hence L is quasimple. Similarly Q is cyclic. Finally Lemma 

29.1 in [12] identifies L and completes the proof. 

(7.6): Let p be odd, Op,(G) = 1, F*(G) = L simple, and a E A # with 2 = 

rap(Ca(a)). Then one of  the following holds: 

(1) L -~ L~(q) with q odd, q -~ e mod p, and a induces an outer diagonal 

automorphism on L. 

(2) L Z L2(p p) and a induces a field automorphism on L. 

(3) p > 5, a e L, and L ~- PSp4(p) or G2(p). 

Proof: See 29.1 in [12]. While Col with p = 5 appears in the conclusion of 29.1 

it is not a real example as can be seen from the discussion in the proof of 7.7 

below. 

(7.7): Let p be odd, Op,(G) = 1, F*(G) = L simple, and NG(A)  transitive on 

A # . Then one of the following holds: 

(1) L ~ An with n = p2 + r, 0 < r < p, and A has a regular orbit on the n-set 

of  L. 

(2) L -~ Col and p = 5. 

(3) L ~ L;(q) with q -- e mod p, or p = 3 and L ~- G2(q), or aD4(q). Further 

i f  p = 3 then some element of order 3 induces a graph or field automorphism 

on L .  

Proo~ Notice that  as NG(A) is transitive on A # and Z < L, we have A _< 

L. By 7.1, Z ( P )  is cyclic. Thus if L is of Lie type in characteristic p then 

L is defined over GF(p) and Z is the center of a long root group. Indeed as 

mp(G) > 2, F*(CG(Z))  = Q is extraspecial. Then as NG(A) is transitive on 

A #,  A is determined up to conjugacy in Aut(L) ,  A g Q, and L is not unitary or 

symplectic. Hence as rap(Co(A)) = 2, Q has width 1. But then rap(G) = 2, a 

contradiction. 

Suppose L = A,,. Then as Z ( P )  is cyclic, n = pe + r, 0 <_ r < p, and Z has 

pe-1 orbits of length p. Then as A # is fused in L, A has p~-2 orbits of length p2 
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and r fixed points. Finally as A = (A(CG(A))), we conclude e = 2 and (1) holds. 

I f p  -- 3 then as m3(ea(A) )  = 2, SCNa(3) = ~ and hence by Exercise 8.11 

in [1], m 3 ( a )  = 3. 

Suppose L is sporadic. Then as mp(G) ~ 3 with equality when p = 3, 10.6 

in [12] says either p = 3 and L - J3, or p = 5 and L ~ Col, Ly, Fs, F2, or F1, 

or p = 7 and L ~ F1. In the first case Z(P)  is noncyclic, a contradiction. 

If L = Col then one can calculate that there exists A ~ E52. admitting the 

action of SL2(5), but that A is not fused into J (P)  ~- Ep~. On the otherhand 

from page 49 of [12], rn~(Ca(x)) >_ 3 for each element x of order 5 in G, so case 

(c) of Lemma 29.1 of [12] should not appear. 

In the remaining cases we check A does not exist from the list of maximal 

p-local subgroups of G. 

Thus we have reduced to the case L of Lie type over GF(q) with q prime to 

p. Now if L is classical and p is prime to the order d of the center of the universal 

Chevalley group L of L, then A is contained in ml elementary abelian p-subgroup 

of L of maximal rank and L is transitive on such subgroups. (c/. 10.2.4 in [12]) 

Similarly if L is exceptional and p is prime to the order w of the Weyl group 

of the algebraic group of L then P N L is abelian, so the same conclusion holds. 

(c/. 10.1.3 in [12]) So p divides d or w in the respective case, unless possibly 

rnp(L) = 2. However this last case is impossible, for otherwise by our restriction 

on p, some element x of order p in G induces a field automorphism on L. But 

mp(CL(x)) = rap(L), so x centralized a conjugate of A by transitivity of L on its 

elementary abelian p-subgroups of maximal rank. 

In particular if L is exceptional then either p = 3 or p = 5 and L is of type 

E,, or 2E6, or p = 7 and L is of type E7 or Es. 

Next if p = 3 then m3(G) = 3 by an earlier observation. Hence m3(L) < 3, 

so by 10.6 in [12], L has Lie rank 1 or 2 and ms(L) ~ 2. Thus some element of 

order 3 in G induces an outer automorphism on L and (3) holds. 

So p > 3. Similarly if L is classical then as p divides d, L ~- L~(q) with 

n -- q - e - 0 mod p. Then as SCNp+I(P) = g~, n = p, so (3) holds. 

We have reduced to the case L is exceptional of type En or 2E6 and p = 5 

or 7. Here we can repeat the argument in paragraphs two and three on page 400 

of [12] to complete the proof. 
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8. p-locals w i t h  a p r o p e r  2 -genera ted  p-core 

In this section p is a prime and G a finite group. Let A(G) = Ar(G ) be the 

commuting graph on the subgroups of G of order p. Let X e A(G), H = NG(X), 

Cx = (A(H)), H = H/Of(H),  and P E Sylp(Cx). Assume also that: 

(i) r~,2(H ) ~ H. 
(ii) mr(Co(A)) > 2 for all A e £2P(G). 

(iii) Of(G) = 1. 

Recall the notation E~(G) and F~,,~(G) defined in section 6. 

(8.1): IrA E Mr(H) with AOr,(H ) g n then A = X. 

Proof: Assume A ~ X. Replacing A by AX, we may assume X < A. Then 

A is noncyclic. By (ii), mr(P ) > 2 so by 46.2 in [1], NH(A) <_ r~,2(g) and of 

course Of(H) < F~,,2(H), while by a Frattini argument, H = Op,(H)NH(A). 

This contradicts (i). 

(s.2): Ass~,~e F'(/~) ~ Or(~r). Then o~e of the folowing holds: 

(1) ~'x = )(  x Kx,  where Kx has a s*rongly p-embedded subgroup with 1 < 

mr(Rx). 
(2) p = 2 and f-I ~- A9/Z2 is quasisimple. 

(3) p = 2 and Cx = KxCcx([ f  x ) where [4x ~- Sz(8)/Z2, SL2(5), or SLx(5)* 

SL2(5) is perfect and m2(Ccx(RX)) = 1. 

Proof'. Without loss G = Cx. Let M = F*(H). 

Observe first that mr(CpM(A)) > 2 for each A e £2P(M) by 7.3.1 and 7.5. 

In particular we have FpnM,2(H) < Mr°p,2(H). 
Suppose next that 1 # J 4_ E(H) is P-invariant, d < r~,2(H), and 

mr(XJ  ) > 1. Then there is U E C~(P N X J) with m(Cp(U)) > 2, so Na(U) <_ 

F~,,2(H ). So M < JCH(U) < F~,.2(H). But then by a Frattini argument and the 

previous paragraph, H = MrpnM,2(H)  < r~,,2(g), contrary to (i). 
Thus no such J exists. Now if L is a component of H with mr(L ) > 1 if 

p = 2 and X ~ L, then mr(XL ) > 1, so applying the previous paragraph to 

J = (LP}, we conclude g 2~ F~,2(H) and hence L ~ F°Np(L),2(H). Therefore 

m(Cp(L)) _< 1 so P <_ NH(L) and if p is odd then L = E(H). 

Now if p is odd then as L ~ r~,2(H), 24.9 in [12] says L has a strongly 

p-embedded subgroup. In particular X ~ L and as Cp(L) is cyclic and H = 

(A(H)), Z = Cn(L) and H / X  has a strongly p-embedded subgroup. Therefore 
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H / X  is described in 6.2. Indeed as L N X = 1 and H = (A(H)), H splits over 

X, so H = X × K x  where K x  ~- H /X ,  and (1) holds. 

So p --- 2. Suppose Fp,2(H) < F~,,2(H). Then Theorem 1 of [2] says 

that either H ~ Ag/Z2, or H -~ KCH(K), where m2(CH(K)) = 1 and K 

is simple with a strongly embedded subgroup or K ~ Sz(8)/Z2, SL2(5), or 

SL2(5) * SL2(5). In the first case (2) holds and in the last three cases (3) holds. 

If K has a strongly embedded subgroup, then as H is generated by involutions, 

H = K x CH(K) with CH(K) generated by involutions, so as m2(CH(K)) = 1, 

X = Cx(K)  and (1) holds. 

Finally assume rp,2(H) ~ r~,2(H). Then m2(Cp(A)) = 2 for some E4 

A _< P. Then Z(P) is cyclic and by 46.2 in [1], SCN3(P) = O. Thus X _< L 

for each component L of H and L is described in 1.2.1. Suppose re(L) > 1. 

We have seen P < NH(L) and L ~ r~,2(H ) so if r~nL,2(L) = renL,2(L) then 

by Theorem 1 in [2], L ~ A9/Z~. Now by (ii), H = L and (2) holds. Thus 

F~,nL,2(L ) ~ FpnL,2(L) so by 1.2.2, L ~- Sp4(q) for some odd q. Now for A E 

£J(P)  with ANL E £~(L), we find L = FA,2(L) < F~,,2(H), contrary to an earlier 

reduction. 

Thus each component of H is of 2-rank 1. Now if L1 and L~ are distinct 

components and Qs ~- Pi <- Li with Pi ~ P, then rp, p,,2(H) < r°p,2, so as 

L1L2 ~ r ,2, Li ~ SL2(5) for i = 1 or 2 and La- ,  _< r~,,2 if L3-i is not SL2(5). 

We conclude that (3) holds. 

In the remainder of this section if F*( / t )  # Op(/~) then K x  is the preimage 

in NG(X) of the subgroup/~x of lemma 8.2, with Kx  = Cx in 8.2.2. Further 

set L x  = OP'(K~).  

(8.3): Assume F*(H) = Op(/I). Then one of the following holds: 

(1) p = 3 and Cx is the split extension of 3 ~+2 by GL~(3). 

(2) p = 2 and Cx -~ GL2(3) * D2- or GL2(3)YD2,, n >_ 3, Dlo/(Qs * Ds), 

Ah/(Qs * Ds), or Sh/(Qs * Ds). 

Proof." Again we may take Op,(H) = 1 and H = (A(H)). Let Q = Op(H). If 

mp(Q) > 2 then H = Fh,2(H ) _< F~,,2(H ), so that (i) supplies a contradiction. 

Therefore mp(Q) _< 2. In particular P ~ Q, so Aut(Q) is not p-closed and 

hence Q is noncyclic. But by 8.1, Q is of symplectic type. Thus by 23.9 in 

[1], Q = Q I * Q 2 ,  where i f p  is odd, Qi - p1+2 and Q2 is cyclic, while if 

p = 2 then Q1 - Q8 and Q2 is cyclic or dihedral. In particular if p is odd then 
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Of(Out(Q)) ~- SL2(p), while if p = 2 then either 02'(Out(Q)) ~ 83 × Z 2 -  or 

Q ~- Qs * Ds and 02'(Out(Q)) ~- $5. So as Q = Op(H) and H = (A(H)), 

H/Q -~ SL2(p) if p is odd, H/Q -~ Sa if p = 2 and Q is not Qs * Ds, and 

H/Q -~ Sa, Dlo, As, or Ss if Q --- Qs * Ds. 

Suppose p is odd. Then H/Q -~ SLz(p). Hence H = QVg(t)  where t is an 

involution with CH(t) ~- SL2(p) × Z(Q) and It, Q] ~ p1+2. So as H = (A(H)/,  

Z(Q) = X and Q = [Q,t]. Now as m2(P) > 2, J(P) ~ Ep3 and i f p  > 3 there is 

A e £~(P)  with A ~ Q and A ~ J(P), so that A = CH(A), contradicting (ii). 

Thus if p is odd, (1) holds. 

So take p = 2. As m2(P) >_ 3 > m2(Q), there is an involution t E P - Q, 

and by Baer-Suzuki, t inverts some R of odd prime order r. If r = 3 then t 

acts on [R, Q] ~ Qs and (t)R[Q, R] ~- GL2(3). In particular if H/Q -~ Sa, then 

keeping (ii) in mind, we conclude (2) holds. 

(8.4): One of the following holds: 

(1) X G. 

(2) F*( G) is the direct product of p components permuted regularly by X and 

isomorphic to Lx .  

(3) G is almost simple. 

(4) F*(G) = M x Lx  with M a component of G of p-rank 1, X < M, and 

8.2.1 holds, so Lx  has a strongly p-embedded subgroup. 

Proof: Assume X is not normal in G. Let Q = f~(Op(G)). Then 

Qo = ~ , (NQ(X))X  <_ f l , (Op(H)),  

so by 8.1, Q0 = 1 or X. Thus Q = 1 or X and as X is not normal in G, Q = 1. 

Hence E(G) = F*(G). 

Suppose f* ( /~ )  = Op([-I). Then by 8.3, X = f~l(Z(P)), so P • Sylr(G ). 

Further if {L1, . . .L , ,}  are the components of G, then as X = f~I(Z(P)),  P is 

transitive on these components and the projection Xi of X on Li is of order p. 

But then X1 × " "  x Xa _~ H,  so by 8.1, n = 1 and G is almost simple. 

Thus we may assume F* ( / t )  # Op(/~), so that 8.2 applies. By 31.17 in [1], 

L x  <_ E(G). Let L be a component of G. By 31.18 in [1] one of the following 

holds: 

(a) L = [L,X]. 

(b) (L X) is the direct product of p components permuted regularly by X 

and isomorphic to a component of Lx.  
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(c) L 4_ Lx. 

As E(O) = F*(G) we m a y  choose L so tha t  (a) or (b) holds; in ei ther  case 

let M = (LX). I f  M = F*(G) then  (2) or (3) holds and we are done, so assume 

not.  Then  F*(G) = M x M1. 

If  X induces inner au tomorph i sms  on M then  the project ion X1 of X on 

M wi th  respect  to  the decomposi t ion  M x Ca(M) is contained in 121(Op(H)), 

so by 8.1, X = X1 and M = L. Then  M1 ~ E(H)  with X ~ M1, so 8.2.1 holds 

wi th  MI  = Lx .  Then  as X = I~I(CH(Lx)), rap(M) = 1 and  (4) holds. 

So X induces outer  au tomorph ims  on M.  In par t icu lar  X ~ E(G) so as 

L x  <_ E(G), X ~ L x  and hence 8.2.1 holds. Also 1 • OP'(CM(X)), so as 8.2.1 

holds, L x  <_ M. Similarly L x  <_ M1, contradict ing M N M1 = 1. 

(8 .5) :  Assume G is almost simple with p odd, and let M = F*(G) and L = Lx .  

Then one of the following holds: 

(1) L -~ G(q) is of Lie type and Lie rank 1 over GF(q) with q a power of  p, 

M ~ G(qP), and X induces field automorphisms on M. 

(2) L ~ A2p, X <_ M, and M ~ A3p. 

(3) p = 3, L -~ Ae, X _< M,  and  M -~ J3 or Sp6(2). 

(4) p = 3, L -~ L2(8), X _< M,  and  ei ther  M ~- Co3 or U6(2) or 03'(G)is  G~(8), 

3D4(2), Sp4(8), U3(8), or  L4(8), each extended by a field automorphlsm of 

order  3. 

(5) p = 3, L -- As, M ~- Sp4(8), and X induces field automorphims on M. 

(6) p = 5, L ~ Sz(32),  and  X _< M - 2F4(32). 

(7) p = 5, L ~ 2F4(2)',  and X induces field automorphisms on M ~ 2F4(32). 

(8) p = 3, Cx ~- GL2(3)/31+2, and M ~- PSp4(3) or Sp6(2). 

Proof.: Suppose first tha t  F*(/-I)  -- Op(H) .  Then  by 8.3, p --- 3 and /-) 

GL2(3)/3 ~+2. In par t icu lar  P E Syl3(G) and m3(G) = 3. As m3(G)  = 3, 10.6 

in [12] says M ~ An with 9 < n < 11, or M --- J3, or M ~ L~(3) or PSp4(3), 

or M E Chev(q) for some pr ime q ¢ 3. In the last case we conclude f rom 14.1 

in [12] and the s t ruc ture  of H tha t  M E Chev(2). Then  in any case we conclude 

f rom the s t ruc ture  of H tha t  (8) holds. 

So assume F * ( H )  ¢ Op([-I). Then  by 8.2, C'x is described in 6.2. We 

observe tha t  if M is sporadic  then (3) or (4) holds by 14.4.3 in [12]. (Actual ly  we 

also need to use the Tables  in section 5 of [12] to see tha t  if p = 3 and  L x  ~- A6 

with M sporadic  then 03(Cx)  is noncycllc except in case (3).) Thus  we assume 



32 M. ASCHBACHER Isr. J. Math. 

M is not sporadic. Hence by 14.4 in [12], L is not sporadic. 

Suppose that L ~ G(q) is of Lie type of Lie rank 1 over GF(q) with q a 

power of p. Then by 14.16 in [12], either M E Chev(p) or p = 3 and L ~- A6 

or L2(8). In the former case as M is of characteristic p-type, X induces outer 

automorphisms on M and hence by 1.1, either (1) holds or p = 3 and X induces 

graph or graph-field automorphisms on M ~ D4(q) or aD4(q). In the latter case 

9.1.2 and 9.1.3 in [12] completes the proof. 

Thus we assume p = 3, L is Ae or L2(8), and M q~ Chev(3). Then by 

14.16 in [12], M E Chev(2) O Air. Of course if M E Att then (2) holds, so take 

M E Chev(2). If (1) fails then by 7.2 and 9.1 in [12], X induces inner-diagonal 

automorphis  on M. Then by 14.4 in I12], M is defined over GF(q), where 
q = 2 unless possibly q = 8 and L ~ L2(8). Now by Burgoyne's Tables in section 

34 of [12], (3) or (4) holds. 

Next suppose L ~ A2p with p > 3. Then by 14.15.1 in [12], (2) holds. 

Suppose p = 3 and L ~ La(4). Then by 14.19.4 and 9.1.3 in [12], X induces 

field automorphisms on M ~ La(4 a) or graph automorphisms on M ~ D4(4) or 

aD4(4). But then by 9.1 in [12], some element of order 3 in CM(X) induces an 

outer automorphism on L, a contradiction. 

This leaves p = 5 and L ~ Sz(32) or 2Fa(2)'. Then by 14.16 in [12], 

M e Chev(2). Then by 14.4 in [12], either (7) holds or the extended Dynkin 

diagram of the algebraic defining group of M has a B2 or F4 subdiagram and M 

is defined over GF(q) for q = 32 or 2, for L ~ Sz(32) or 2F4(2)', respectively. 

By 14.6 in [12], M is not classical, so M is F4(q) or 2Fl(q). In the latter case (6) 

holds by 14.10.9 in [12]. In the former we check directly that no element of M of 

order 5 has a component of type L. 

(8.6): Assume G is almost simple and p = 2. Let M = F*(G) and L = Lx.  

Then one of the following holds with q even: 

(1) 
(2) 

(3) 
(4) 
(5) 
(6) 
(7) 
(s) 

L -~ L2(q), M ~ L2(q2), and X induces field automorphisms on M. 

L -~ L2(q), L -~ L~(q), and X induces graph automorphims on M. 

L TM Ua(q), M ~- La(q2), and X induces graph-tield automorphims on M. 

L ~- Sz(q), M ~- Sp4(q), and X induces graph automorphims on M. 

L ~ L2(8) and X induces graph automorphims on M "~ G2(3). 

L - L2(4) and X M  ~ S7 

L ~ L2(4), X <_ M, and M -~ Jl .  

H ~- As/Qa * Ds and G ~- ,12 or Ja. 
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(9) H ~- GL~(3)YD2s and M ~ Aut(L3(3)). 

Proof: If F * ( / I )  = O 2 ( / I / t h e n  by 8.3, X is 2-central in G and H is described 

in 8.3. Then we conclude (8 / or (9) holds. 

So assume F * ( / I  / ¢ O2(/I) .  Similarly if 8.2.2 or 8.2.3 holds then X is 

2-central and we obtain a contradiction from the structure of H.  Finally if 8.2.1 

holds, we appeal to [13] to conclude either M E Chcv(21 and X induces outer 

automorphisms on M or one (5/-(7 / holds. Then in the former case we appeal 

to [9]. 

9. T h e  p r o o f  o f  T h e o r e m  2 

In this section we prove Theorem 2. Our original proof of Theorem 2 was longer 

and less elegant than the one given here. This proof was suggested by Yoav 

Segev. 

Throughout  this section we assume the hypotheses of Theorem 2. In addi- 

tion let A = hp(G),  R = Op,(G), and G = G/R. We may assume G = (h). 

(9.1): rnp(G) > 2. 

Proof: As A is connected and Op(G I = I, 6.1 and 6.2 say mp(G I _> 2. Then by 

6.6, mp(G I > 2. 

Let K = Kp(G) and ~ the graph on the 1-simplices of K with s adjacent 

to t if s U t is a 2-simplex. Let C be the set of connected components of G and 

for C E C let F(C) be the full subcomplex of K on the vertices contained in 

members  of C. 

Observe we have a map  

which induces a bijection ¢ : C ~ ¢ ( 0 )  of C with the set of connected compo- 

nents of S~(G). 

By 2.5 in [19]: 

(9.2): 
(i) F(C) is connectea each C e C. 

(2) f f  C, D are distinct members of C then either F( C) N F( D ) = 0 or F( C) N 

r (D)  = {x} consists of a single vertex. 
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Following Segev in section 2 of [19], let F = F1 U F2 be the bipartite graph 

with r l  = {F(C)  : C • C}, 

F2 = {x E A: {x} = F(C) N F(D), C,D • C} 

and adjacency is equal to inclusion. By Theorem 2.8 in [19]: 

(9.3): F is a tree. 

Now G acts as a group of automorphisms of the finite bipartite tree F 

and preserves the bipartition, so G fixes some vertex 7 E F. As Op(G) = 1, 

7 $ F2 so 7 = F(C) for some C E C. Hence G fixes the connected component 

A = ¢(C)  of £~(G). Further if A ~: £~(G) ° (cf. section 46 of [1]) then A = {A} 

for some A E £~(G) and G acts on A contradicting Op(G) = 1. Therefore 

A C_ £~(G) °. Now by 46.7.2 in [1], A = £~(F~,,2(G)) ° and NG(A) = F~,2(G ) for 

some P e Sylp(G). So as G acts on A we have: 

(9.4): G = r ~ a ( G  ) and/X = £~(G) ° is connected. 

Now assume Theorem 2 fails for G. Then: 

(9.5): g is disconnected. 

Proof: Assume otherwise. Then by 2.3.1 in [19], A(x) is connected for each 

x E A, contrary to our assumption that Theorem 2 fails for G. 

Now by 9.4 and 9.5 there is A 6 £~(G)-£~(G)°; that is {A) is a connected 

component of ~ ( G ) ,  so A(A) = F ( ¢ - I ( A ) ) .  Without loss, A _< P.  Then 

z = f l l (g(P))  6 A and {z} = F(C) N A(A), so z 6 As. 

{A} = £~(CG(x)) for each x 6 A(A) - {z}. 

Ifg 6 CG(x)--NG(A) then F(V)zAxAgF(C) is a cycle in F, contradicting 

(9.6): 

Proof 

9.3. 

(9.7): 

Proof." 

[z, R] = 1. 

[z, R] = ([CR(x), z] : x E A(A) - {z}) and by 9.6, Cn(x) < NG(A), so 

[OR(x), z] = 1 

Notice that as Op(G) = 1, also Op(G) = 1 by 9.7. Also by 9.1, rap(G) > 2 

while by 9.6, rap(co(a)) = 2, so (~ satisfies the hypotheses of 7.2. Then 9.6 says 

that neither case (1) or case (2) of 7.2 holds, so G is almost simple. 
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Further if p = 2 then by 7.3, case (b) or (c) of 7.3 holds. But in both  eases 

9.6 is violated. Therefore p is odd and G is described in 7.6. By 9.6, the first two 

cases of 7.6 do not hold, s o p  _> 5 and L -- PSp4(p) or G2(p). As G = (A(G)) and 

Out(G) is of order prime to p, we conclude G = L and G = (za), and then by 9.7, 

G <_ CG(R) so that  G is quasisimple. Now 5.5.3 supplies the final contradiction. 

Thus the proof of Theorem 2 is complete. 

10. The proof of  Theorem 1 

In this section G is a finite group and p is a prime. 

(10.1): Let G = A x B with hp(A) ¢ ~ ¢ Ap(B). Then 

(1) Kp(C) is connected. 

(2) K~(G) is simply connected if and only irKs(A) or Kp(B) is connected. 

Proof: This follows from 6.7 and 2.1. 

(10.2): Assume Op(G) = Of(G) = 1. Then one of the following holds: 

(1) Kp(F*(G)) is simply connected. 

(2) G is almost simple. 

(3) F*(G) = A x B where A and B are simple with strongly p-embedded 

subgroups. 

Proof: Assume neither (1) nor (2) holds. As Op(G) = Of(G)  = 1, F*(G) = 

L1 x . . .  x Lr, where Li, 1 < i < r, are the components of G. Then applying 

10.1 to A1 x A2 where A1 = L1 and A2 = L2 x . . .  x Lr, we conclude K(Ai)  

is disconnected for i = 1 and 2. Hence by 6.1, Ai has a strongly p-embedded 

subgroup, and then by 6.2, As is simple, so that  (3) holds. 

(10.3): Let G = <Ap(G)) and F*(G) = L = L, x L2 the direct product of 

simple groups L1 and L2 with strongly p-embedded subgroups. Then Kp(G) is 

not simply connected if and only if one of the following holds: 

( t )  a = L. 

(2) p = 2 and G ~ LlwrZ2. 

(3) For i = 1 or 2, p = 3 and Li ~- L2(8) or p = 5 and L~ ~ Sz(32). Further  i f  

CG(Li) • L3-i  then L3-i  -- Li. 

Proof: Let K = K(G). If G = G1 x G2 with F*(Gi) = Li then by 10.1, K is 

simply connected if and only if G1 or G2 does not have a strongly p-embedded 
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subgroup. So we may assume G is not a direct product of this form. In particular 

G#L. 
Suppose L1 is not normal in G. Then p = 2 and some involution t E G 

interchanges L1 and L2. If G = (t)L then G u LlwrZ2 and Fp,2(Ca(t)) ~ Ca(t) 

for P E Syl2(CG(t)), so G is not simply connected by 6.3 and Theorem 2. Thus we 

may assume Go = No(L1) ~ L. Then Coo(t) is isomorphic to L1 extended by an 

involutory outer automorphism, so in particular by 6.2, K(CGo(t)) is connected. 

Also K(Go) is simply connected by induction on the order of G, so by 6.9 applied 

to H = Go, K is simply connected. Thus we may assume L1 _~ G. 

As L1 has a strongly p-embedded subgroup we conclude from 6.2 that  

Out(L1) is cyclic. Thus if La- i  # CG(Li) then we have a decomposition G = 

Gl x G2 as in paragraph one, contrary to the reduction of that  paragraph. Thus 

we have reduced to the case G = L X  for some X E A(G) inducing outer au- 

tomorphims on L1 and L2. Indeed as X induces outer automorphims on Li it 

follows from 6.2 that  either Li = Gi(q v) is of Lie type and Lie rank 1 with q a 

power o f p  and X induces field automorphisms on Li or p = 3 or 5 and Li ~- L2(8) 

or Sz(32), respectively. 

Assume p = 3 and L1 ~- L2(8) or p = 5 mad L1 ~ Sz(32). Then for 

each X E A(G) - A(L), there exists a unique d(X) E A(L1) with X ± C d(X) ±. 

Extend d to a map d : A(G) ~ A(L) by letting d = ida(L) on A(L). Then the 

existence of d and 9.3 in [7] say K(G) and K(L)  have the stone homotopy type, 

while by 10.1, K(L)  is not simply connected. 

Thus we may assume that  Li is not L2(8), Sz(32) for p = 3, 5, respectively. 

It remains to show K is simply connected. 

Now there exists a group M = M1 x M2 with M~ = LiXi ~ L iX  and 

X = X1X2 N G. Let D = K ( M )  and t : K --* D inclusion. By 10.1, D is simply 

connected. Thus if we can show ~ is locally simply connected in the language of 

[8], then Theorem 1 in [8] will complete the proof. 

But t - l (s tD(s))  = K(Cv(s) )  for each simplex s of D, so in particular 

as G ~_ M, t - l (s tD(s))  # ~. Further if S = (s) N G # ~ then S 4_ CG(s), so 

K(CG(s)) is contractible. Thus it remains to show K(CG(Y))  is simply connected 

for Y E A(M) - A(G). Let Y~ be the projection of Y on Mi. If Y~ # 1 for i = 1 

and 2 then Z < Z(CG(Y)) where Z = YIY2 (7 G E A(G), so again K(CG(Y))  

is contractible. Finally if Y = Y1 then CG(Y) = CL,(Y) × L2Z, where Z E 

A(G) - A(L) projects on Y~. In particular K(L2Z)  is connected, so by 10.1, 
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K(Ca(Y)) is simply connected, completing the proof. 

(10.4): Let G = (Av(G)) and F* (a )  = L = L,  × L2 where L, and L2 are 

simple with strongly p-embedded subgroups. Assume A(x) is connected for each 

x 6 Ap(G). Then Kp(G) is not simply connected i f  and only i f  either 

(1) G = G1 x G2 with F*(Gi) = Li and Gi having a strongly p-embedded 

subgroup, or 

(2) p = 3,5, L, ~ L2(8), 8z(32), respectively, and G = L X  with X • A(G) 

inducing field automorphisms on L1 and L2. 

Proof: This follows from 10.3, recalling that we saw during the proof of 10.3 

that if 10.3.2 holds then h(x) is disconnected for x • A(G) - A(L). 

(10.5): Let Ov(G ) = Ov,(G ) = 1, L = F*(G), and assume mv(L  ) > 2 and 

X • Ap(G ) - Ap(L ) with A(CL(X))  disconnected. Then one of the following 

holds: 

(1) L ~ G(q v) is o£Lie type and Lie rank 1 with q a power of p and X induces 

field automorphisms on L. 

(2) p = 2, L ~- L~(q) or Sp4(q), q even, or G2(3) and X induces graph auto- 

morphisms on L. 

(3) p = 2, L ~ L3(q2), q even, and X induces graph-field automorphims on L. 

(4) p > 3, L "~ L~(q), a odd, q =_ e mod p, and X induces diagonal automor- 

phisms on L. 

(5) X is regular on the p components Li, 1 < i < p, o£G, and Li has a strongly 

p-embedded subgroup. 

Fhrther i£ A ( X )  is connected then one of the following holds: 

(a) p = 2 and L ~ La(q2), q even. 

(b) p > 3 and L ~- L~p(qV). 

(c) G hasp components Li, 1 < i < p, permuted regularly by X and Li ~- G(q p) 

is of Lie type and Lie rank 1 with q a power of p. 

Proof'. By 6.3, X L  satisfies the hypotheses of section 7 or section 8. Thus one 

of (1)-(5) holds by 7.1, 7.2, 7.3, 7.6, 8.4, 8.5, and 8.6. For example most cases in 

the lemmas are eliminated as X ;~ L while 8.5.5, 8.5.7, and 8.6.6 do not hold as 

rnv(L ) > 2. 

So assume A(X) is connected. Then A(CG(X))  is not contained in X L ,  

so Out(L) has noncyclic Sylow p-groups in (1)-(4), while in (5) Li has an outer 
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automorphism a of order p such that (a)Li does not have a strongly p-embedded 

subgroup. Inspecting the list in (1)-(5), we conclude one of (a)-(c) holds. 

We now prove Theorem 1. Assume the hypotheses of Theorem 1 and let 

K = K(G) and L = F*(G). By 6.4 and 6.5, K is simply connected if and only 

if g((~)  is simply connected. Thus we may assume Of(G) = 1. We may also 

assume Op(G) = 1 as otherwise K is simply connected. 

Suppose K(L) is simply connected. By 6.9 we may assume A(CL(X)) is 

disconnected for some X E A(G) - A(L). By 6.6, mp(L) > 2. Thus G satisfies 

the hypotheses of 10.5, so (a), (b), or (c) of 10.5 is satisfied. In cases (a) and (b), 

K(L) is not simply connected by 5.5 and by Theorem 2, respectively. That  is in 

case (b) there exists A e £~(G) with my(Ca(A)) = 2; namely the preimage of A 

in SLy(q) is isomorphic to pl+2 and each element of A # lifts to an element with 

p distinct eigenvalues. 

So assume (c) holds. Then J = CL(X) ~ L1 has a strongly embedded 

subgroup so as A(X) is connected there exists Y • A(X) inducing field automor- 

phisms on J .  Hence if p = 2 then K is simply connected by 10.3, so we may take 

p odd. Let Go be the subgroup of G fixing each Li. Then as X is regular on the 

components of G, X Y  N Go • A(G) so without loss Y _< Go. Now we observe 

that  for each Z • A(G0) - A(L), A(CL(Z)) is connected while by 10.1, K(L) 

is simply connected. Thus K(Go) is simply connected by 6.9. Finally for each 

X • A(G) - A(G0), A(Coo(X)) is connected, so K is simply connected by 6.9. 

Thus we may asume K(L) is not simply connected. Then by 10.2 either 

G is almost simple or L = L1 x L2 with Li containing a strongly p-embedded 

subgroup fo~ i = 1 and 2. In the first case either (1) or (4) holds. In the second 

(1), (2), or (3) holds by 10.4. 

11. A m i n i m a l  c a s e  

In this section p is a prime and G is a finite group such that G = AH where 

H = F*(G) is the direct product of simple components Li, 0 < i < n, of order 

prime to p and permuted transitively by a~l elementary abelian p-subgroup A 

of rank at least 3. Let L = L1. Let hi, 1 < i <_ n, be coset representatives 

for B = NA(L) in A w i t h  L a~ = Li a n d a l  = 1. Write ai : L ---* Li for the 

isomorphism x ~-~ x a~. Let X be a set of B-invariant proper subgroups X of L 

such that 

(*) NL(X) N CL(B) <_ X 
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Let ~" = ~'(X) = {(X, A) :  X e X} and consider the geometric complex C(G, ~') 

over X. (cf. Sections 3 and 41 in [1]) Recall C(G,~)  is the simplical complex with 

vertex set U F e y  G/F  and simplices {U0,.. .  , Ud} such that nia__0 vi ¢ o .  Also 

G is represented as a group of automorphism on C(G, ~ )  by right multiplication. 

Let d(L, X) be the geometric simplical complex over X, and let d(L, X) '~ 

be the geometric product of n copies of C(L, X). (cf. Section 3) Observe H acts 

as a group of automorphisms of C(L, X)" via 

g = Hgiol ,*.  ( X h l , . . .  , X h n )  ~ ( X h l g l , . . .  ,Xhngn) .  
i 

(11.1): Either 

(1) A is regular on the components oTG, or 

(2) B is of order p and induces t~eld automorphims on L of Lie type. 

Proof: Assume B ~ 1. As H = F*(G), B is faithful on L. As L has order prime 

to p but admits an automorphism b of order p, it follows that L is of Lie type, a 

Sylow p-subgroup of Out(L) is cyclic, and b induces a field automorphism. (el. 

1.1) That is (2) holds. 

(11.2): Let X 6 2( a n d V  = (X,A). Then NH(V) = YI iXai  = H A V and 

V = A(H n V). 

Proof: First V = A(H O V) w i t h H n V  = (X A) = HiXai" AisoCH(A)  = 

Hi CL(B)ai, and by Hypothesis (*), CL(B)fl NL(X) <_ X,  so CH(A)fl NH(V) <_ 

H O V. Finally by a Frattini argument, NH(V) = (H fl V)(NH(V) fl ell(A)) = 

H N V .  

(11.3): The map ¢ : (Xgl , . . .  ,Xgn) ~ (X,A)g is an g-equivariant isomor- 

phism ¢ : C( L, X) n --. C( G, 3:) of geometric complexes, where g is the element of 

H whose projection on Li is gioti . 

Proof: Let V = (X, A). By 11.2, rii x a i  = HAV,  so ¢ is a well defined bijection 

between the set of vertices of d(L, X) n and the set of vertices of C(G, Jr). Observe 

also that ¢ is H-equivariant. 

Let s = (U0 , . . . ,  Ud) be a simplex of C(L, X) n. Then translating by H and 

using the fact that ¢ is H-equivariant, we may take Ui = (Xi , . . .  ,Xi). Therefore 

¢(s) = (V0,. • • Va), where ~ = (Xi, A). In particular ¢(s) is a simplex of C(G, .T'), 

so ¢ is a morphism. Similarly ¢-1 is a morphism. 
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(11.4): Assume 

(1) C( L, X) is a residually connected, simply connected flag complex of dimen- 

sion at least 2. 

(2) For each y C_ X,  Kp((A, NvE; v)) is simply connected. 

(3) / t 'B  ¢ 1 then CL(B) = <Cx(B) : X 6 X>. 

Then Kp( G) is simply connected. 

Proof" Let D = C(L,X)"  and ¢ : D ~ K ( G , I )  the isomorphism of 11.3. Then 

¢(d) = F(d)h(d) for some F(d) 6 Y and h(d) 6 H and we define G(d) = r(d)  h(d) 

and O(d) = g(G(d)). Of course these definitions are independent of the choice 

of coset representative h(d). Notice also that by 11.2, NH(F(d)) = H N F(d), 

so the map d ~-* G(d) is injective on objects of any given type but objects of 

different type may have the same image if distinct members of X are conjugate 

in L. Finally observe that as each simplex of K = K(G) is contained in some 

conjugate of A, T = {O(d) : d 6 D} is a cover of g .  

Let s be a simplex of D, 0, = Ndes O(d), and G(s) = Ndes G(d). From the 

proof of the previous lemma, G(s) is H-conjugate to (X(s), A), where X(s)  = 

NYey Y and y C X is the type of s. Thus as 8o -~ K(G(s)), 8~ is simply 

connected by hypothesis (2). Therefore 0 is a 1-approximation of K by D in the 

sense of [8]. 

Next by hypothesis (1) and 3.3.3, D is simply connected. Thus appealing 

to Theorem 3 in [8], it suffices to show that if x _< A is a vertex of K then 

T(z )  = {d • D : x  • O(d)} is connected. 

Observe that if x # B then Cn(x) is the direct product of the nip conju- 

gates of C(L,)(x) ~- L under A. On the otherhand if x = B then Cn(x) is the 

direct product of the n-conjugates of CL(X) under A. 

If x • 0~ then x v N G(s) = x G(,). Thus CH(X) is flag transitive on T(x). 

In particular T(x) is isomorphic to C(CH(x), Y:~), where 9v, = {C f ( z ) :  F • .~}. 

(cf. 3.1 in [3]) Now if x # B then C(CH(x),JYz) '~- C(L,X) "/p, so that T(x) 

is connected in this case. On the otherhand if x = B then C(CH(z),~x) ~- 

C(CL(B),XB)' ,  where XB = {Cx(B) : X • X},  and hence is connected by 

hypothesis (3) and 3.1, completing the proof. 

(11.5): Assume G and L satisfy the hypotheses of the Conjecture and that the 

Conjecture holds in all proper sections of G. Assume also that 

(1) C( L, Af) is a residually connected, simply connected flag complex of dimen- 



Vol. 82, 1993 SIMPLE CONNECTIVITY OF p-GROUP COMPLEXES 41 

sion at least 2. 

(2) H B  ¢ 1 then CL(B) = (Cx (B)  : X E X).  

Then gv (  G ) is simply connected. 

Proof." This  follows f rom 11.4. As proper  sections of  G satisfy the Conjecture ,  

hypothes is  (2) of 11.4 is satisfied via 6.5 applied in an induct ive context  to any  

p roper  subgroup  M of G containing A. Notice the hypothesis  in 6.5 tha t  A(x) is 

connected for x E A = Kp(M) holds by 6.1 and 6.2 since mp(A ) >_ 3. 

12. T h e  p r o o f  o f  T h e o r e m  3 

(12.1) :  Let X be a finite set of order n and r a geometry over I = {1, 2, 3} such 

that there is a bijection vi : X --* r i  of X with ri  for each i -- 1 ,2 ,3 ,  and that 

, , ,(x) * ,,~(y) for  i # j i f  and  only i f  z ~ y. Then 

(1) F has diameter 2 i f  n >_ 3. 

(2) F is simply connected i f  n ~_ 5. 

Proof: P a r t  (1) is trivial.  Assume n >_ 5. Then  by (1), r has  d iamete r  2, so 

by 3.3 in [6], it suffices to show squares and pentagons  in F are trivial.  But  the  

objec ts  of  d is tance 2 f rom el(x)  are vi(x),  i = 2,3 and  vl(y) ,  y ~ x. Fur ther  

F(vl (x) ,v l (y ) )  = {vi(z) : z ~ x ,y ,  i = 2,3},  which is connected as n >_ 5. Thus  

i f p  = abcda is a square  in r with a = el(x)  and c = e l (y) ,  then  p is tr ivial  by  

3.4 in [6]. Thus we may  take c = v2(x). But then b = va(z) and c = va(w), so 

again  p is t r ivial  as we have reduced to a previous case. 

Final ly  if p = x0 " "  zs is a pen tagon  then we m a y  take x0 = vl (x). Then  as 

d(xo,x2) = 2, x2 = e l (y )  or vi(x), i = 2,3. But  also d(xo,xs) = 2 so as z2*xs we 

m a y  take x2 = el(y)  and xa = v2(x). But  then  va(z) e F(xo,x2,xa) for z ~ x ,y ,  

so 1.5 in [7] shows p is tr ivial  and  completes  the proof.  

(12 .2) :  Let G be a group 2-transitive on a set X of order n >_ 5 and let I = 

{1,2,3},  x~, i = 1 ,2 ,3 ,  distinct points of X ,  G~ = Gz,, and ~ = (G~ : i E I). 

Assume 

(*) Gi = (Gii, Gik) [or all distinct i , j ,  k in I. 

Then 

(1) C( G, jz) is a residually connected geometric complex. 

(2) F(G,  Jr) satisfies the hypotheses of 12.1, so F(G,  ~ ')  is simply connected. 

(3) If  G is 3-transitive on X then C(G,~') is the flag complex of  F(G,,~') .  
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Proof: As G is 2-transitive on X,  Gi is maximal in G, so G = (Gi, Gj} for all 

i # j .  This together with hypothesis (*) is equivalent to the residual connectivity 

of g = C(G, Y'); cf. 3.2 in [31. 

So (1) is established and visibly P = F(G, .~') satisfies the hypotheses of 12.1, 

and hence is simply connected by  12.1. Thus we may assume G is 3-transitive on 

X. Notice that hypothesis (*) is automatically satisfied in this case since Gi is 

2-transitive on X - {xi}, so Gij and Gik are maximal in Gi. As G is 3-transitive 

on X,  each triangle in F is a 2-simplex of C, so C = K(F).  Hence (3) holds. 

We are now in a position to establish Theorem 3. So assume the hypotheses 

of Theorem 3. We will apply 11.5 to a suitable family X of subgroups of L. 

If L is of Lie type-and Lie rank at least 3 let X be the maximal parabolics 

containing some fixed Borel subgroup of L. Then C = C(L, X) is the building of 

L and hence is a residually connected, simply connected flag complex; see 5.5 for 

example. Further if B = NA(L) # 1 then by 11.1, B is of order p and induces 

field automorphisms on L, so we may take B to fix each member of X and of 

course CL(B) = (Cx(B) : X E X). So 11.5 applies and established part (1) of 

Theorem 3 when L has Lie rank at least 3. 

Next assume L has Lie rank 2. Here we choose X to be the family ~" of 

section 4. Again C is a residually connected, simply connected flag complex by 

4.1 and 4.2. As above if B # 1 then we may choose B to fix each member of X 

and 11.5.2 is satisfies. Thus 11.5 completes the proof of part (1) of Theorem 3. 

In the remaining cases L is 3-transitive on a set X of order n > 5, so we 

can appeal to 12.2. As we observed during the proof of 12.2, the 3-transitivity of 

L on X insures that hypotheses (*) of 12.2 is satisfied. Further if B # 1 then by 

11.2, L -~ Lz(q p) and B induces field automorphisms on L, so we may choose B 

to fix each member of X and hypothesis 11.5.2 is satisfied. By 12.2, hypothesis 

11.5.1 is satisfied. Thus 11.5 completes the proof of Theorem 3. 
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